New applications of Besov-type and Triebel-Lizorkin-type spaces

被引:72
|
作者
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
基金
中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Trace; Pseudo-differential operator; MORREY SPACES; DECOMPOSITIONS; VARIABLES;
D O I
10.1016/j.jmaa.2009.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper. the authors prove that Besov-Morrey spaces are proper subspaces of Besov-type spaces B-p,q(s,tau)(R-n) and that Triebel-Lizorkin-Morrey spaces are special cases of Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n). The authors also establish an equivalent characterization of B-p,q(s,tau)(R-n) when tau is an element of [0, 1/p). These Besov-type spaces B-p,q(s,tau)(R-n) and Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n) were recently introduced to connect Besov spaces and Triebel-Lizorkin spaces with Q spaces. Moreover, for the spaces B-p,q(s,tau)(R-n) and F-p,q(s,tau)(R-n), the authors investigate their trace properties and the boundedness of the pseudo-differential operators with homogeneous symbols in these spaces, which generalize the corresponding classical results of Jawerth and Grafakos-Torres by taking tau = 0. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [41] Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces
    Han, YS
    Yang, DC
    STUDIA MATHEMATICA, 2003, 156 (01) : 67 - 97
  • [42] CHARACTERIZATIONS OF VARIABLE TRIEBEL-LIZORKIN-TYPE SPACES VIA BALL AVERAGES
    Zhuo, Ciqiang
    Chang, Der-Chen
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 19 - 40
  • [43] Non-smooth atomic decomposition of Triebel-Lizorkin-type spaces
    Sawano, Yoshihiro
    Yang, Dachun
    Yuan, Wen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [44] Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type
    Fan Wang
    Ziyi He
    Dachun Yang
    Wen Yuan
    Communications in Mathematics and Statistics, 2022, 10 : 483 - 542
  • [45] Characterization by approximation of homogeneous Besov and Triebel–Lizorkin type spaces
    Madani Moussai
    Archiv der Mathematik, 2024, 122 : 59 - 69
  • [46] New characterizations of Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
    Han, Yanchang
    Xu, Yanbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 305 - 318
  • [47] Nonseparable Wavelets of Meyer Type in Besov and Lizorkin - Triebel Spaces
    Garkovskaya, S. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2009, 9 (02): : 12 - 18
  • [48] MULTIPLICATIVENESS CONDITIONS FOR FUNCTIONAL SPACES OF THE BESOV AND LIZORKIN - TRIEBEL TYPE
    KALIABIN, GA
    DOKLADY AKADEMII NAUK SSSR, 1980, 251 (01): : 25 - 26
  • [49] New Herz Type Besov and Triebel-Lizorkin Spaces with Variable Exponents
    Dong, Baohua
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [50] Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces
    Li, Pengtao
    Sun, Wenchang
    FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (03) : 373 - 435