New applications of Besov-type and Triebel-Lizorkin-type spaces

被引:72
|
作者
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
基金
中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Trace; Pseudo-differential operator; MORREY SPACES; DECOMPOSITIONS; VARIABLES;
D O I
10.1016/j.jmaa.2009.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper. the authors prove that Besov-Morrey spaces are proper subspaces of Besov-type spaces B-p,q(s,tau)(R-n) and that Triebel-Lizorkin-Morrey spaces are special cases of Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n). The authors also establish an equivalent characterization of B-p,q(s,tau)(R-n) when tau is an element of [0, 1/p). These Besov-type spaces B-p,q(s,tau)(R-n) and Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n) were recently introduced to connect Besov spaces and Triebel-Lizorkin spaces with Q spaces. Moreover, for the spaces B-p,q(s,tau)(R-n) and F-p,q(s,tau)(R-n), the authors investigate their trace properties and the boundedness of the pseudo-differential operators with homogeneous symbols in these spaces, which generalize the corresponding classical results of Jawerth and Grafakos-Torres by taking tau = 0. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [11] COMPLEX INTERPOLATION ON BESOV-TYPE AND TRIEBEL-LIZORKIN-TYPE SPACES
    Yang, Dachun
    Yuan, Wen
    Zhuo, Ciqiang
    ANALYSIS AND APPLICATIONS, 2013, 11 (05)
  • [12] Function spaces of Besov-type and Triebel-Lizorkin-type — a survey
    Da-chun Yang
    Wen Yuan
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 405 - 426
  • [13] Function spaces of Besov-type and Triebel-Lizorkin-type——a survey
    YANG Da-chun
    YUAN Wen
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2013, 28 (04) : 405 - 426
  • [14] New Besov-type spaces and Triebel-Lizorkin-type spaces including Q spaces
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 451 - 480
  • [15] CHARACTERIZATIONS OF SLICE BESOV-TYPE AND SLICE TRIEBEL-LIZORKIN-TYPE SPACES AND APPLICATIONS
    Lu, Yuan
    Zhou, Jiang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 643 - 684
  • [16] Musielak-Orlicz Besov-Type and Triebel-Lizorkin-Type Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 329 - 395
  • [17] Musielak-Orlicz Besov-type and Triebel-Lizorkin-type spaces
    Yang, Dachun
    Yuan, Wen
    Zhuo, Ciqiang
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (01): : 93 - 157
  • [18] Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    COLLECTANEA MATHEMATICA, 2016, 67 (02) : 247 - 310
  • [19] Compact embeddings in Besov-type and Triebel-Lizorkin-type spaces on bounded domains
    Goncalves, Helena F.
    Haroske, Dorothee D.
    Skrzypczak, Leszek
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (03): : 761 - 795
  • [20] Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces via Averages on Balls
    Zhuo, Ciqiang
    Sickel, Winfried
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (03): : 655 - 672