New applications of Besov-type and Triebel-Lizorkin-type spaces

被引:72
|
作者
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
基金
中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Trace; Pseudo-differential operator; MORREY SPACES; DECOMPOSITIONS; VARIABLES;
D O I
10.1016/j.jmaa.2009.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper. the authors prove that Besov-Morrey spaces are proper subspaces of Besov-type spaces B-p,q(s,tau)(R-n) and that Triebel-Lizorkin-Morrey spaces are special cases of Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n). The authors also establish an equivalent characterization of B-p,q(s,tau)(R-n) when tau is an element of [0, 1/p). These Besov-type spaces B-p,q(s,tau)(R-n) and Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n) were recently introduced to connect Besov spaces and Triebel-Lizorkin spaces with Q spaces. Moreover, for the spaces B-p,q(s,tau)(R-n) and F-p,q(s,tau)(R-n), the authors investigate their trace properties and the boundedness of the pseudo-differential operators with homogeneous symbols in these spaces, which generalize the corresponding classical results of Jawerth and Grafakos-Torres by taking tau = 0. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [31] Regularity of Characteristic Functions in Besov-Type and Triebel–Lizorkin-Type Spaces
    Wen Yuan
    Winfried Sickel
    Dachun Yang
    Journal of Fourier Analysis and Applications, 2025, 31 (3)
  • [32] Besov-type and Triebel–Lizorkin-type spaces associated with heat kernels
    Liguang Liu
    Dachun Yang
    Wen Yuan
    Collectanea Mathematica, 2016, 67 : 247 - 310
  • [33] Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces II: Sharp boundedness of almost diagonal operators
    Bu, Fan
    Hytonen, Tuomas
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [34] Dual Properties of Triebel-Lizorkin-Type Spaces and their Applications
    Yang, Dachun
    Yuan, Wen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (01): : 29 - 58
  • [35] Variable Triebel-Lizorkin-Type Spaces
    Drihem, Douadi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1817 - 1856
  • [36] Compact embeddings in Besov-type and Triebel–Lizorkin-type spaces on bounded domains
    Helena F. Gonçalves
    Dorothee D. Haroske
    Leszek Skrzypczak
    Revista Matemática Complutense, 2021, 34 : 761 - 795
  • [37] CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES
    Drihem, D.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (02): : 24 - 57
  • [38] Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces I: Ap-dimensions of matrix weights and'-transform characterizations
    Bu, Fan
    Hytonen, Tuomas
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ANNALEN, 2025,
  • [39] Fourier Multipliers on Triebel-Lizorkin-Type Spaces
    Yang, Dachun
    Yuan, Wen
    Zhuo, Ciqiang
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [40] POINTWISE AND GRAND MAXIMAL FUNCTION CHARACTERIZATIONS OF BESOV-TYPE AND TRIEBEL-LIZORKIN TYPE SPACES
    Soto, Tomas
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 103 - 117