Machine Learning Testing: Survey, Landscapes and Horizons

被引:416
|
作者
Zhang, Jie M. [1 ]
Harman, Mark [2 ]
Ma, Lei [3 ]
Liu, Yang [4 ]
机构
[1] UCL, CREST, London WC1E 6BT, England
[2] Facebook, London W1T 1FB, England
[3] Kyushu Univ, Fukuoka 8190395, Japan
[4] Nanyang Technol Univ, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Machine learning; software testing; deep neural network; COMPUTER-AIDED DIAGNOSIS; SYMBOLIC EXECUTION; SAMPLE-SIZE; CLASSIFIER; PERFORMANCE;
D O I
10.1109/TSE.2019.2962027
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper provides a comprehensive survey of techniques for testing machine learning systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [1] A survey of digital circuit testing in the light of machine learning
    Pradhan, Manjari
    Bhattacharya, Bhargab B.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (01)
  • [2] Horizons and Landscapes
    Serrano, Pedro
    THEORY IN ACTION, 2023, 16 (04): : 69 - 82
  • [3] Energy landscapes for machine learning
    Ballard, Andrew J.
    Das, Ritankar
    Martiniani, Stefano
    Mehta, Dhagash
    Sagun, Levent
    Stevenson, Jacob D.
    Wales, David J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (20) : 12585 - 12603
  • [4] Machine Learning-Based Fuzz Testing Techniques: A Survey
    Zhang, Ao
    Zhang, Yiying
    Xu, Yao
    Wang, Cong
    Li, Siwei
    IEEE ACCESS, 2024, 12 : 14437 - 14454
  • [5] Machine learning landscapes and predictions for patient outcomes
    Das, Ritankar
    Wales, David J.
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (07):
  • [6] Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures
    Kuznetsova, Vera
    Coogan, Aine
    Botov, Dmitry
    Gromova, Yulia
    Ushakova, Elena V.
    Gun'ko, Yurii K.
    ADVANCED MATERIALS, 2024, 36 (18)
  • [7] A Survey on Automated Driving System Testing: Landscapes and Trends
    Tang, Shuncheng
    Zhang, Zhenya
    Zhang, Yi
    Zhou, Jixiang
    Guo, Yan
    Liu, Shuang
    Guo, Shengjian
    Li, Yan-Fu
    Ma, Lei
    Xue, Yinxing
    Liu, Yang
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2023, 32 (05)
  • [8] Western landscapes with retreating horizons
    Mitchell, Paul
    WESTERLY, 2013, 58 (01): : 18 - 20
  • [9] JailbreakZoo: Survey, Landscapes, and Horizons in Jailbreaking Large Language and Vision-Language Models
    Jin, Haibo
    Hu, Leyang
    Li, Xinnuo
    Zhang, Peiyan
    Chen, Chonghan
    Zhuang, Jun
    Wang, Haohan
    arXiv,
  • [10] A Machine Learning-Oriented Survey on Tiny Machine Learning
    Capogrosso, Luigi
    Cunico, Federico
    Cheng, Dong Seon
    Fummi, Franco
    Cristani, Marco
    IEEE ACCESS, 2024, 12 : 23406 - 23426