Homogeneous Lyapunov functions for polynomial systems: a Tensor product approach

被引:0
|
作者
Hajer, Bouzaouache [1 ]
Naceur, Benhadj Braiek [2 ]
机构
[1] ISETCOM, Inst Super Etud Technol Commun, Ariana, Tunisia
[2] Ecole Polytech Tunis, LECCP, La Marsa, Tunisia
关键词
polynomial systems; Kronecker product; stability; homogeneous Lyapunov function; LMIs;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows that the Kronecker product and the properties of tensoriel algebra are useful tools for nun quadratic stability analysis. When using them, sufficient conditions for global asymptotic stability of polynomial systems can be easily derived in terms of LMI feasibility tests for the existence of homogeneous Lyapunov functions of even degree.
引用
收藏
页码:7 / +
页数:2
相关论文
共 50 条
  • [31] Boundedness of solutions and Lyapunov functions in quasi-polynomial systems
    Figueiredo, A
    Gléria, IM
    Rocha, TM
    PHYSICS LETTERS A, 2000, 268 (4-6) : 335 - 341
  • [32] Homogeneous Stabilizer by State Feedback for Switched Nonlinear Systems Using Multiple Lyapunov Functions' Approach
    Ye, Hui
    Jiang, Bin
    Yang, Hao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [33] Construction of Lyapunov Functions for Homogeneous Second-Order Systems
    Lopez-Ramirez, Francisco
    Sanchez, Tonameti
    Moreno, Jaime A.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5494 - 5499
  • [34] Control Lyapunov functions for homogeneous "Jurdjevic-Quinn" systems
    Faubourg, L
    Pomet, JB
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 : 293 - 311
  • [35] Iterative Homogeneous Polynomial Lyapunov Functions Approach for Stabilizing Minimum Mode-Dependent Average Dwell Time Switched Systems via Output Feedback
    Yu, Shaohang
    Wu, Chengfu
    Wang, Liang
    Wu, Jia-Nan
    IEEE ACCESS, 2019, 7 : 110812 - 110825
  • [36] Strict Lyapunov Functions for Homogeneous Time-Varying Systems
    Zhang, Bin
    Jia, Yingmin
    Du, Junping
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (03): : 1994 - 2002
  • [37] Numerical design of Lyapunov functions for a class of homogeneous discontinuous systems
    Mendoza-Avila, Jesus
    Efimov, Denis
    Ushirobira, Rosane
    Moreno, Jaime A.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (09) : 3708 - 3729
  • [38] Control Lyapunov functions for homogeneous Jurdjevic-Quinn systems
    Faubourg, L.
    Pomet, J.-B.
    ESAIM Control, Optimisation and Calculus of Variations, 2000, (05) : 293 - 311
  • [39] Computing Upper-bounds of the Minimum Dwell Time of Linear Switched Systems via Homogeneous Polynomial Lyapunov Functions
    Chesi, G.
    Colaneri, P.
    Geromel, J. C.
    Middleton, R.
    Shorten, R.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 2487 - 2492
  • [40] Stability of Non-Polynomial Systems Using Differential Inclusions and Polynomial Lyapunov Functions
    Hexner, Gyoergy
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2946 - 2951