Homogeneous Lyapunov functions for polynomial systems: a Tensor product approach

被引:0
|
作者
Hajer, Bouzaouache [1 ]
Naceur, Benhadj Braiek [2 ]
机构
[1] ISETCOM, Inst Super Etud Technol Commun, Ariana, Tunisia
[2] Ecole Polytech Tunis, LECCP, La Marsa, Tunisia
关键词
polynomial systems; Kronecker product; stability; homogeneous Lyapunov function; LMIs;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows that the Kronecker product and the properties of tensoriel algebra are useful tools for nun quadratic stability analysis. When using them, sufficient conditions for global asymptotic stability of polynomial systems can be easily derived in terms of LMI feasibility tests for the existence of homogeneous Lyapunov functions of even degree.
引用
收藏
页码:7 / +
页数:2
相关论文
共 50 条
  • [21] Lyapunov Differential Equation Hierarchy and Polynomial Lyapunov Functions for Switched Linear Systems
    Abate, Matthew
    Klett, Corbin
    Coogan, Samuel
    Feron, Eric
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 5322 - 5327
  • [22] Polynomial static output feedback H∞ control via homogeneous Lyapunov functions
    Lo, Ji-Chang
    Liu, Jung-Wei
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (06) : 1639 - 1659
  • [23] Estimation of asymptotic stability regions via composite homogeneous polynomial Lyapunov functions
    Pang, Guochen
    Zhang, Kanjian
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (03) : 484 - 493
  • [24] Piecewise Polynomial Lyapunov Functions Based Stability Analysis for Polynomial Fuzzy Systems
    Chen, Ying-Jen
    Tanaka, Motoyasu
    Tanaka, Kazuo
    Wang, Hua O.
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2013), 2013, : 34 - +
  • [25] Piecewise polynomial Lyapunov functions for a class of switched nonlinear systems
    Coutinho, DF
    Trofino, A
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 4265 - 4270
  • [26] ON THE DEGREE OF POLYNOMIAL IN THE UNCERTAINTY VALID LYAPUNOV FUNCTIONS FOR POLYTOPIC SYSTEMS
    Savov, Svetoslav
    Popchev, Ivan
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (10): : 1335 - 1338
  • [27] Homogeneous Lyapunov functions for homogeneous infinite dimensional systems with unbounded nonlinear operators
    Polyakov, Andrey
    SYSTEMS & CONTROL LETTERS, 2021, 148 (148)
  • [28] Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems
    Jiang Liu
    Naijun Zhan
    Hengjun Zhao
    Mathematics in Computer Science, 2012, 6 (4) : 395 - 408
  • [29] On the stability analysis of nonlinear systems using polynomial Lyapunov functions
    Bouzaouache, Hajer
    Braiek, Naceur Benhadj
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 76 (5-6) : 316 - 329
  • [30] Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems
    Liu, Jiang
    Zhan, Naijun
    Zhao, Hengjun
    MATHEMATICS IN COMPUTER SCIENCE, 2012, 6 (04) : 395 - 408