Estimation of asymptotic stability regions via composite homogeneous polynomial Lyapunov functions

被引:6
|
作者
Pang, Guochen [1 ]
Zhang, Kanjian [1 ]
机构
[1] Southeast Univ, Sch Automat, Minist Educ, Key Lab Measurement & Control CSE, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic stability region; invariant set; homogeneous polynomial function; composite Lyapunov function; LINEAR-SYSTEMS; RELAXATIONS; TIGHTNESS; FORMS;
D O I
10.1080/00207179.2014.962616
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we present a new method to estimate the asymptotic stability regions for a class of nonlinear systems via composite homogeneous polynomial Lyapunov functions, where these nonlinear systems are approximated as a convex hull of some linear systems. Since level set of the composite homogeneous polynomial Lyapunov functions is a union set of several homogeneous polynomial functions, the composite homogeneous polynomial Lyapunov functions are nonconservative compared with quadratic or homogeneous polynomial Lyapunov functions. Numerical examples are used to illustrate the effectiveness of our method.
引用
收藏
页码:484 / 493
页数:10
相关论文
共 50 条
  • [1] Estimation of asymptotic stability regions via homogeneous polynomial Lyapunov functions
    Fujisaki, Y
    Sakuwa, R
    INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (06) : 617 - 623
  • [2] Estimation of asymptotic stability regions via homogeneous polynomial Lyapunov functions
    Fujisaki, Y
    Sakuwa, R
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1411 - 1414
  • [3] Stability of polynomial systems via polynomial Lyapunov functions
    Qi Hongsheng
    Cheng Daizhan
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 528 - +
  • [4] Deconvolution filtering for stochastic systems via homogeneous polynomial Lyapunov functions
    Zhang, Baoyong
    Lam, James
    Xu, Shengyuan
    SIGNAL PROCESSING, 2009, 89 (04) : 605 - 614
  • [5] Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
    Bernal, Miguel
    Sala, Antonio
    Jaadari, Abdelhafidh
    Guerra, Thierry-Marie
    FUZZY SETS AND SYSTEMS, 2011, 185 (01) : 5 - 14
  • [6] Estimation of stability regions for linear systems subjected to actuator saturation and disturbance via homogeneous parameter-dependent quadratic Lyapunov functions
    Pang Guochen
    Zhang Kanjian
    Zhang Huasheng
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 5961 - 5966
  • [7] Estimation of stability regions for continuous-time systems with actuator saturation via homogeneous parameter-dependent quadratic Lyapunov functions
    Xiang, Zhong
    Wang Zenggui
    Pang, Guochen
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 94 - 99
  • [8] Estimation of Regions of Attraction of Dynamical Systems via Polynomial Lyapunov Function
    Puzyrov, Volodymyr
    Awrejcewicz, Jan
    Losyeva, Nataliya
    Savchenko, Nina
    Nikolaieva, Oksana
    PERSPECTIVES IN DYNAMICAL SYSTEMS II-NUMERICAL AND ANALYTICAL APPROACHES, DSTA 2021, 2024, 454 : 457 - 473
  • [9] On the convexity of sublevel sets of polynomial and homogeneous polynomial Lyapunov functions
    Chesi, G.
    Hung, Y. S.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5198 - 5203
  • [10] Polynomial static output feedback H∞ control via homogeneous Lyapunov functions
    Lo, Ji-Chang
    Liu, Jung-Wei
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (06) : 1639 - 1659