Estimation of asymptotic stability regions via homogeneous polynomial Lyapunov functions

被引:11
|
作者
Fujisaki, Y [1 ]
Sakuwa, R
机构
[1] Kobe Univ, Dept Syst & Comp Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Grad Sch Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
D O I
10.1080/00207170600578324
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Asymptotic stability regions of non-linear dynamical systems are estimated by using homogeneous polynomial Lyapunov functions, which include quadratic Lyapunov functions as a special case. The non-linear system is represented as a convex hull of some linear systems in a specified region of the state space. It is shown that the estimation can be formulated as an LMI optimization problem in an augmented state space.
引用
收藏
页码:617 / 623
页数:7
相关论文
共 50 条
  • [1] Estimation of asymptotic stability regions via homogeneous polynomial Lyapunov functions
    Fujisaki, Y
    Sakuwa, R
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1411 - 1414
  • [2] Estimation of asymptotic stability regions via composite homogeneous polynomial Lyapunov functions
    Pang, Guochen
    Zhang, Kanjian
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (03) : 484 - 493
  • [3] Stability of polynomial systems via polynomial Lyapunov functions
    Qi Hongsheng
    Cheng Daizhan
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 528 - +
  • [4] Deconvolution filtering for stochastic systems via homogeneous polynomial Lyapunov functions
    Zhang, Baoyong
    Lam, James
    Xu, Shengyuan
    SIGNAL PROCESSING, 2009, 89 (04) : 605 - 614
  • [5] Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
    Bernal, Miguel
    Sala, Antonio
    Jaadari, Abdelhafidh
    Guerra, Thierry-Marie
    FUZZY SETS AND SYSTEMS, 2011, 185 (01) : 5 - 14
  • [6] Estimation of stability regions for linear systems subjected to actuator saturation and disturbance via homogeneous parameter-dependent quadratic Lyapunov functions
    Pang Guochen
    Zhang Kanjian
    Zhang Huasheng
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 5961 - 5966
  • [7] Estimation of stability regions for continuous-time systems with actuator saturation via homogeneous parameter-dependent quadratic Lyapunov functions
    Xiang, Zhong
    Wang Zenggui
    Pang, Guochen
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 94 - 99
  • [8] Estimation of Regions of Attraction of Dynamical Systems via Polynomial Lyapunov Function
    Puzyrov, Volodymyr
    Awrejcewicz, Jan
    Losyeva, Nataliya
    Savchenko, Nina
    Nikolaieva, Oksana
    PERSPECTIVES IN DYNAMICAL SYSTEMS II-NUMERICAL AND ANALYTICAL APPROACHES, DSTA 2021, 2024, 454 : 457 - 473
  • [9] On the convexity of sublevel sets of polynomial and homogeneous polynomial Lyapunov functions
    Chesi, G.
    Hung, Y. S.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5198 - 5203
  • [10] Polynomial static output feedback H∞ control via homogeneous Lyapunov functions
    Lo, Ji-Chang
    Liu, Jung-Wei
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (06) : 1639 - 1659