A drift-diffusion model for semiconductors with temperature effects

被引:6
|
作者
Xu, Xiangsheng [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
EQUATIONS; SYSTEM;
D O I
10.1017/S0308210507001187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an existence theorem for a stationary semiconductor model which takes into account the current generated by the gradient of the temperature.
引用
收藏
页码:1101 / 1119
页数:19
相关论文
共 50 条
  • [21] ON THE EXISTENCE AND UNIQUENESS OF TRANSIENT SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    JUNGEL, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (05): : 677 - 703
  • [22] A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors
    Chainais-Hillairet, Claire
    Gisclon, Marguerite
    Juengel, Ansgar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1483 - 1510
  • [23] Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors
    Acharyya, Aritra
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (01) : 309 - 320
  • [24] Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors
    Aritra Acharyya
    Jayabrata Goswami
    Suranjana Banerjee
    J. P. Banerjee
    Journal of Computational Electronics, 2015, 14 : 309 - 320
  • [25] A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors
    Chainais-Hillairet, Claire
    Juengel, Ansgar
    Shpartko, Polina
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 819 - 846
  • [26] EXISTENCE AND STABILITY OF TIME-PERIODIC SOLUTIONS TO THE DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    Kan, Toru
    Suzuki, Masahiro
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2015, 10 (04): : 615 - 638
  • [27] Exact solutions for the drift-diffusion model of semiconductors via lie symmetry analysis
    Romano, V.
    Sellier, J. M.
    Torrisi, M.
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING, 2006, 9 : 383 - +
  • [28] New Galerkin framework for the drift-diffusion equation in semiconductors
    Politecnico di Milano, Milano, Italy
    East-West Journal of Numerical Mathematics, 1998, 6 (02): : 101 - 135
  • [29] Spin drift-diffusion transport and its applications in semiconductors
    Miah, M. Idrish
    Gray, E. MacA.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2009, 13 (5-6): : 99 - 104
  • [30] ASYMPTOTIC BEHAVIORS AND CLASSICAL LIMITS OF SOLUTIONS TO A QUANTUM DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    Nishibata, Shinya
    Shigetay, Naotaka
    Suzuki, Masahiro
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (06): : 909 - 936