Approximation capability of a bilinear immersed finite element space

被引:119
|
作者
He, Xiaoming [1 ]
Lin, Tao [1 ]
Lin, Yanping [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
error estimates; finite element; immersed interface; interface problems;
D O I
10.1002/num.20318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses a bilinear immersed finite element (IFE) space for solving second-order elliptic boundary value problems with discontinuous coefficients (interface problem). This is a nonconforming finite element space and its partition can be independent of the interface. The error estimates for the interpolation of a Sobolev function indicate that this IFE space has the usual approximation capability expected from bilinear polynomials. Numerical examples of the related finite element method are provided. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1265 / 1300
页数:36
相关论文
共 50 条