Pseudococyclic Partial Hadamard Matrices over Latin Rectangles

被引:1
|
作者
Falcon, Raul M. [1 ]
Alvarez, Victor [1 ]
Frau, Maria Dolores [1 ]
Gudiel, Felix [1 ]
Guemes, Maria Belen [1 ]
机构
[1] Univ Seville, Dept Appl Math 1, Seville 41004, Spain
关键词
Hadamard matrix; Latin rectangle; pseudocoboundary; pseudococycle; quasigroup; DIFFERENCE SETS; DESIGNS;
D O I
10.3390/math9020113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical design of cocyclic Hadamard matrices has recently been generalized by means of both the notions of the cocycle of Hadamard matrices over Latin rectangles and the pseudococycle of Hadamard matrices over quasigroups. This paper delves into this topic by introducing the concept of the pseudococycle of a partial Hadamard matrix over a Latin rectangle, whose fundamentals are comprehensively studied and illustrated.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) : 231 - 236
  • [42] ENUMERATION OF TRUNCATED LATIN RECTANGLES
    LIGHT, FW
    FIBONACCI QUARTERLY, 1979, 17 (01): : 34 - 36
  • [43] Maximal orthogonal Latin rectangles
    Horak, P
    Rosa, A
    Siran, J
    ARS COMBINATORIA, 1997, 47 : 129 - 145
  • [44] On Computing the Number of Latin Rectangles
    Stones, Rebecca J.
    Lin, Sheng
    Liu, Xiaoguang
    Wang, Gang
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1187 - 1202
  • [45] Latin rectangles and quadrature formulas
    Dobrovol'skii, N. M.
    Dobrovol'skii, N. N.
    Rebrova, I. Yu.
    Balaba, I. N.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 82 - 88
  • [46] ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES
    GODSIL, CD
    MCKAY, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 19 - 44
  • [47] JOINTLY EXTENDABLE LATIN RECTANGLES
    HORAK, P
    KREHER, DL
    ROSA, A
    UTILITAS MATHEMATICA, 1989, 36 : 193 - 195
  • [48] Permanents, matchings and Latin rectangles
    Wanless, IM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 169 - 170
  • [49] A RESULT ON GENERALIZED LATIN RECTANGLES
    DENG, CL
    LIM, CK
    DISCRETE MATHEMATICS, 1988, 72 (1-3) : 71 - 80
  • [50] Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method
    Falcon, Raul M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 48 : 215 - 223