Pseudococyclic Partial Hadamard Matrices over Latin Rectangles

被引:1
|
作者
Falcon, Raul M. [1 ]
Alvarez, Victor [1 ]
Frau, Maria Dolores [1 ]
Gudiel, Felix [1 ]
Guemes, Maria Belen [1 ]
机构
[1] Univ Seville, Dept Appl Math 1, Seville 41004, Spain
关键词
Hadamard matrix; Latin rectangle; pseudocoboundary; pseudococycle; quasigroup; DIFFERENCE SETS; DESIGNS;
D O I
10.3390/math9020113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical design of cocyclic Hadamard matrices has recently been generalized by means of both the notions of the cocycle of Hadamard matrices over Latin rectangles and the pseudococycle of Hadamard matrices over quasigroups. This paper delves into this topic by introducing the concept of the pseudococycle of a partial Hadamard matrix over a Latin rectangle, whose fundamentals are comprehensively studied and illustrated.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] A Fourier-analytic approach to counting partial Hadamard matrices
    Warwick de Launey
    David A. Levin
    Cryptography and Communications, 2010, 2 : 307 - 334
  • [22] Connecting unextendible maximally entangled base with partial Hadamard matrices
    Yan-Ling Wang
    Mao-Sheng Li
    Shao-Ming Fei
    Zhu-Jun Zheng
    Quantum Information Processing, 2017, 16
  • [23] Using Swarm Intelligence to Search for Circulant Partial Hadamard Matrices
    Phoa, Frederick Kin Hing
    Lin, Yuan-Lung
    Wang, Tai-Chi
    ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 158 - 164
  • [24] Connecting unextendible maximally entangled base with partial Hadamard matrices
    Wang, Yan-Ling
    Li, Mao-Sheng
    Fei, Shao-Ming
    Zheng, Zhu-Jun
    QUANTUM INFORMATION PROCESSING, 2017, 16 (03)
  • [25] A Fourier-analytic approach to counting partial Hadamard matrices
    de Launey, Warwick
    Levin, David A.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2010, 2 (02): : 307 - 334
  • [26] ON COMPLETING LATIN RECTANGLES
    LINDNER, CC
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (01): : 65 - +
  • [27] Jacket matrices constructed from Hadamard matrices and generalized Hadamard matrices
    Finlayson, Ken
    Lee, Moon Ho
    Seberry, Jennifer
    Yamada, Mieko
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 83 - 87
  • [28] HADAMARD MATRICES
    WALLIS, JS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (02) : 149 - 164
  • [29] HADAMARD MATRICES
    BRENNER, JL
    COOKE, KL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 331 - 331
  • [30] On the completion of Latin rectangles to symmetric Latin squares
    Bryant, D
    Rodger, CA
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 : 109 - 124