Pseudococyclic Partial Hadamard Matrices over Latin Rectangles

被引:1
|
作者
Falcon, Raul M. [1 ]
Alvarez, Victor [1 ]
Frau, Maria Dolores [1 ]
Gudiel, Felix [1 ]
Guemes, Maria Belen [1 ]
机构
[1] Univ Seville, Dept Appl Math 1, Seville 41004, Spain
关键词
Hadamard matrix; Latin rectangle; pseudocoboundary; pseudococycle; quasigroup; DIFFERENCE SETS; DESIGNS;
D O I
10.3390/math9020113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical design of cocyclic Hadamard matrices has recently been generalized by means of both the notions of the cocycle of Hadamard matrices over Latin rectangles and the pseudococycle of Hadamard matrices over quasigroups. This paper delves into this topic by introducing the concept of the pseudococycle of a partial Hadamard matrix over a Latin rectangle, whose fundamentals are comprehensively studied and illustrated.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] On Cocyclic Hadamard Matrices over Goethals-Seidel Loops
    Alvarez, Victor
    Armario, Jose Andres
    Falcon, Raul M.
    Frau, Maria Dolores
    Gudiel, Felix
    Guemes, Maria Belen
    Osuna, Amparo
    MATHEMATICS, 2020, 8 (01)
  • [32] Hadamard Matrices Modulo p and Small Modular Hadamard Matrices
    Kuperberg, Vivian
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (09) : 393 - 405
  • [33] On the asymptotic existence of partial complex Hadamard matrices and related combinatorial objects
    de Launey, W
    DISCRETE APPLIED MATHEMATICS, 2000, 102 (1-2) : 37 - 45
  • [34] Construction of New Hadamard Matrices Using Known Hadamard Matrices
    Farouk, Adda
    Wang, Qing-Wen
    FILOMAT, 2022, 36 (06) : 2025 - 2042
  • [35] Structure Learning via Hadamard Product of Correlation and Partial Correlation Matrices
    Ashurbekova, Karim
    Achard, Sophie
    Forbes, Florence
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [36] Generalized Hadamard Matrices Whose Transposes Are Not Generalized Hadamard Matrices
    Craigen, R.
    de Launey, W.
    JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (06) : 456 - 458
  • [37] Divisors of the number of Latin rectangles
    Stones, Douglas S.
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (02) : 204 - 215
  • [38] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (01) : 61 - 61
  • [39] ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES
    GODSIL, CD
    MCKAY, BD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 10 (01) : 91 - 92
  • [40] On Computing the Number of Latin Rectangles
    Rebecca J. Stones
    Sheng Lin
    Xiaoguang Liu
    Gang Wang
    Graphs and Combinatorics, 2016, 32 : 1187 - 1202