Prediction of lipomatous soft tissue malignancy on MRI: comparison between machine learning applied to radiomics and deep learning

被引:12
|
作者
Fradet, Guillaume [1 ]
Ayde, Reina [1 ]
Bottois, Hugo [1 ]
El Harchaoui, Mohamed [1 ]
Khaled, Wassef [2 ]
Drape, Jean-Luc [2 ]
Pilleul, Frank [3 ,4 ]
Bouhamama, Amine [3 ,4 ]
Beuf, Olivier [3 ]
Leporq, Benjamin [3 ]
机构
[1] Capgemini Engn, Paris, France
[2] Univ Paris, Grp Hosp Cochin, AP HP Ctr, Serv Radiol B, Paris, France
[3] Univ Claude Bernard Lyon 1, Univ Lyon, INSA Lyon, CNRS,INSERM,UJM St Etienne,CREATIS UMR U1206 5220, Villeurbanne, France
[4] Ctr Lutte Canc Leon Berard, Dept Radiol, Lyon, France
关键词
Artificial intelligence; Machine learning; Magnetic resonance imaging; Deep learning; Soft tissue neoplasms;
D O I
10.1186/s41747-022-00295-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Malignancy of lipomatous soft-tissue tumours diagnosis is suspected on magnetic resonance imaging (MRI) and requires a biopsy. The aim of this study is to compare the performances of MRI radiomic machine learning (ML) analysis with deep learning (DL) to predict malignancy in patients with lipomas oratypical lipomatous tumours. Methods Cohort include 145 patients affected by lipomatous soft tissue tumours with histology and fat-suppressed gadolinium contrast-enhanced T1-weighted MRI pulse sequence. Images were collected between 2010 and 2019 over 78 centres with non-uniform protocols (three different magnetic field strengths (1.0, 1.5 and 3.0 T) on 16 MR systems commercialised by four vendors (General Electric, Siemens, Philips, Toshiba)). Two approaches have been compared: (i) ML from radiomic features with and without batch correction; and (ii) DL from images. Performances were assessed using 10 cross-validation folds from a test set and next in external validation data. Results The best DL model was obtained using ResNet50 (resulting into an area under the curve (AUC) of 0.87 +/- 0.11 (95% CI 0.65-1). For ML/radiomics, performances reached AUCs equal to 0.83 +/- 0.12 (95% CI 0.59-1) and 0.99 +/- 0.02 (95% CI 0.95-1) on test cohort using gradient boosting without and with batch effect correction, respectively. On the external cohort, the AUC of the gradient boosting model was equal to 0.80 and for an optimised decision threshold sensitivity and specificity were equal to 100% and 32% respectively. Conclusions In this context of limited observations, batch-effect corrected ML/radiomics approaches outperformed DL-based models.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Prediction of lipomatous soft tissue malignancy on MRI: comparison between machine learning applied to radiomics and deep learning
    Guillaume Fradet
    Reina Ayde
    Hugo Bottois
    Mohamed El Harchaoui
    Wassef Khaled
    Jean-Luc Drapé
    Frank Pilleul
    Amine Bouhamama
    Olivier Beuf
    Benjamin Leporq
    European Radiology Experimental, 6
  • [2] Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
    Huynh, Bao Ngoc
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Liland, Kristian Hovde
    Knudtsen, Ingerid Skjei
    Hoebers, Frank
    van Elmpt, Wouter
    Malinen, Eirik
    Dale, Einar
    Futsaether, Cecilia Marie
    FRONTIERS IN MEDICINE, 2023, 10
  • [3] MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study
    Leporq, Benjamin
    Bouhamama, Amine
    Pilleul, Frank
    Lame, Fabrice
    Bihane, Catherine
    Sdika, Michael
    Blay, Jean-Yves
    Beuf, Olivier
    CANCER IMAGING, 2020, 20 (01)
  • [4] MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study
    Benjamin Leporq
    Amine Bouhamama
    Frank Pilleul
    Fabrice Lame
    Catherine Bihane
    Michael Sdika
    Jean-Yves Blay
    Olivier Beuf
    Cancer Imaging, 20
  • [5] MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities
    Gitto, Salvatore
    Interlenghi, Matteo
    Cuocolo, Renato
    Salvatore, Christian
    Giannetta, Vincenzo
    Badalyan, Julietta
    Gallazzi, Enrico
    Spinelli, Maria Silvia
    Gallazzi, Mauro
    Serpi, Francesca
    Messina, Carmelo
    Albano, Domenico
    Annovazzi, Alessio
    Anelli, Vincenzo
    Baldi, Jacopo
    Aliprandi, Alberto
    Armiraglio, Elisabetta
    Parafioriti, Antonina
    Daolio, Primo Andrea
    Luzzati, Alessandro
    Biagini, Roberto
    Castiglioni, Isabella
    Sconfienza, Luca Maria
    RADIOLOGIA MEDICA, 2023, 128 (08): : 989 - 998
  • [6] MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities
    Salvatore Gitto
    Matteo Interlenghi
    Renato Cuocolo
    Christian Salvatore
    Vincenzo Giannetta
    Julietta Badalyan
    Enrico Gallazzi
    Maria Silvia Spinelli
    Mauro Gallazzi
    Francesca Serpi
    Carmelo Messina
    Domenico Albano
    Alessio Annovazzi
    Vincenzo Anelli
    Jacopo Baldi
    Alberto Aliprandi
    Elisabetta Armiraglio
    Antonina Parafioriti
    Primo Andrea Daolio
    Alessandro Luzzati
    Roberto Biagini
    Isabella Castiglioni
    Luca Maria Sconfienza
    La radiologia medica, 2023, 128 : 989 - 998
  • [7] Radiomics-based Machine learning method for prediction of metastatic disease in soft tissue sarcoma
    Singhal, T.
    Singh, P.
    Parida, G. K.
    Patro, P. S.
    Barik, S. K.
    Agrawal, K.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S412 - S413
  • [8] Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics( vol 10 , 1217037 , 2023)
    Huynh, Bao Ngoc
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Liland, Kristian Hovde
    Knudtsen, Ingerid Skjei
    Hoebers, Frank
    van Elmpt, Wouter
    Malinen, Eirik
    Dale, Einar
    Futsaether, Cecilia Marie
    FRONTIERS IN MEDICINE, 2024, 11
  • [9] Machine and deep learning methods for radiomics
    Avanzo, Michele
    Wei, Lise
    Stancanello, Joseph
    Vallieres, Martin
    Rao, Arvind
    Morin, Olivier
    Mattonen, Sarah A.
    El Naqa, Issam
    MEDICAL PHYSICS, 2020, 47 (05) : E185 - E202
  • [10] Radiomics and Machine Learning With Multiparametric Preoperative MRI May Accurately Predict the Histopathological Grades of Soft Tissue Sarcomas
    Wang, Hexiang
    Chen, Haisong
    Duan, Shaofeng
    Hao, Dapeng
    Liu, Jihua
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (03) : 791 - 797