ALGEBRAIC MULTIGRID FOR HIGH-ORDER HIERARCHICAL H(curl) FINITE ELEMENTS

被引:2
|
作者
Lai, James H. [1 ]
Olson, Luke N. [1 ]
机构
[1] Univ Illinois, Siebel Ctr Comp Sci, Urbana, IL 61801 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 05期
基金
美国国家科学基金会;
关键词
algebraic multigrid; high-order; curl; edge elements;
D O I
10.1137/100799095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classic multigrid methods are often not directly applicable to nonelliptic problems such as curl-type partial differential equations (PDEs). Curl-curl PDEs require specialized smoothers that are compatible with the gradient-like (near) null space. Moreover, recent developments have focused on replicating the grad-curl-div de Rham complex in a multilevel hierarchy through smoothed aggregation based algebraic multigrid. These approaches have been successful for Nedelec finite elements (i.e., H(curl) edge elements), but do not extend naturally to high-order representations. In this paper we consider hierarchical high-order Whitney elements for the curl-curl eddy current problem and devise a scalable multilevel approach. Our method generates a hierarchy similar to p-type multigrid, which results in a coarse level that is amenable to further coarsening through the established process of a multilevel complex. The natural hierarchy of the elements induces an effective interpolation operator and motivates the construction of a compatible gradient smoothing process. We detail the multilevel solver for a hierarchical H(curl) basis and present numerical results in support of the method.
引用
收藏
页码:2888 / 2902
页数:15
相关论文
共 50 条
  • [1] ALGEBRAIC MULTIGRID FOR MODERATE ORDER FINITE ELEMENTS
    Napov, Artem
    Notay, Yvan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1678 - A1707
  • [2] Algebraic multigrid for higher-order finite elements
    Heys, JJ
    Manteuffel, TA
    McCormick, SF
    Olson, LN
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (02) : 520 - 532
  • [3] Algebraic multigrid preconditioning of high-order spectral elements for elliptic problems on a simplicial mesh
    Olson, Luke
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05): : 2189 - 2209
  • [4] Hierarchical High Order Finite Element Approximation Spaces for H(div) and H(curl)
    De Siqueira, Denise
    Devloo, Philippe R. B.
    Gomes, Sonia M.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 269 - 276
  • [5] ALGEBRAIC MULTIGRID SCHEMES FOR HIGH-ORDER NODAL DISCONTINUOUS GALERKIN METHODS
    Antonietti, Paola F.
    Melas, Laura
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A1147 - A1173
  • [6] Efficient Parallel Preconditioners for High-Order Finite Element Discretizations of H (grad) and H (curl) Problems
    Wang, Junxian
    Shu, Shi
    Zhong, Liugiang
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 325 - +
  • [7] Three Low Order H-Curl-Curl Finite Elements on Triangular Meshes
    Zhang, Shangyou
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (04) : 1021 - 1032
  • [8] An algebraic multigrid method for high order time-discretizations of the div-grad and the curl-curl equations
    Boonen, Tim
    Van lent, Jan
    Vandewalle, Stefan
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (3-4) : 507 - 521
  • [9] Convergence of high order curl-conforming finite elements
    Geuzaine, C
    Meys, B
    Dular, P
    Legros, W
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1442 - 1445
  • [10] Recurrences for Quadrilateral High-Order Finite Elements
    Beuchler, Sven
    Haubold, Tim
    Pillwein, Veronika
    MATHEMATICS IN COMPUTER SCIENCE, 2022, 16 (04)