On Delannoy numbers and Schroder numbers

被引:33
|
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Central Delannoy numbers; Euler numbers; Schroder numbers; CONGRUENCES;
D O I
10.1016/j.jnt.2011.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nth Delannoy number and the nth Schroder number given by D-n = Sigma(n)(k=0) (n k) (n + k k) and S-n = Sigma(n)(k=0) (n k) (n + k k) 1/k+1 respectively arise naturally from enumerative combinatorics. Let p be an odd prime. We mainly show that Sigma(p-1)(k=1) D-k/k(2) equivalent to 2(-1/p) Ep-3 (mod p) and Sigma(p-1)(k=1) S-k/m(k) equivalent to m(2)-6m+1/2m (1 - (m(2)-6m+1/p)) (mod p), where (-) is the Legendre symbol, E-0, E-1, E-2, ... are Euler numbers. and in is any integer not divisible by p. We also conjecture that Sigma(p-1)(k=1) D-k(2)/k(2) equivalent to -2q(p)(2)(2) (mod p) where q(p)(2) denotes the Fermat quotient (2(p-1) - 1)/p. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2387 / 2397
页数:11
相关论文
共 50 条
  • [31] SCHRODER NUMBERS MODULO-3
    VOWE, M
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (01): : 83 - 84
  • [32] On Cauchy Products of q-Central Delannoy Numbers
    Halici, Serpil
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (03): : 167 - 176
  • [33] 2 COMBINATORY PROPERTIES OF SCHRODER NUMBERS
    GOUYOUBEAUCHAMPS, D
    VAUQUELIN, B
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1988, 22 (03): : 361 - 388
  • [34] GENERATING TREES AND THE CATALAN AND SCHRODER NUMBERS
    WEST, J
    DISCRETE MATHEMATICS, 1995, 146 (1-3) : 247 - 262
  • [35] A new orthogonal polynomial associated with a generalization of Delannoy numbers
    Dagli, Muhammet Cihat
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 187
  • [36] Schroder matrix as inverse of Delannoy matrix
    Yang, Sheng-liang
    Zheng, Sai-nan
    Yuan, Shao-peng
    He, Tian-Xiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (11) : 3605 - 3614
  • [37] Central and local limit theorems for the weighted Delannoy numbers
    Belovas, Igoris
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 25 - 44
  • [38] Central Delannoy Numbers and Balanced Cohen-Macaulay Complexes
    Gábor Hetyei
    Annals of Combinatorics, 2006, 10 : 443 - 462
  • [39] On sums of binomial coefficients involving Catalan and Delannoy numbers modulo
    Mao, Guo-Shuai
    RAMANUJAN JOURNAL, 2018, 45 (02): : 319 - 330
  • [40] A Stern-type congruence for the Schroder numbers
    Cao, Hui-Qin
    Pan, Hao
    DISCRETE MATHEMATICS, 2017, 340 (04) : 708 - 712