On Delannoy numbers and Schroder numbers

被引:33
|
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Central Delannoy numbers; Euler numbers; Schroder numbers; CONGRUENCES;
D O I
10.1016/j.jnt.2011.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nth Delannoy number and the nth Schroder number given by D-n = Sigma(n)(k=0) (n k) (n + k k) and S-n = Sigma(n)(k=0) (n k) (n + k k) 1/k+1 respectively arise naturally from enumerative combinatorics. Let p be an odd prime. We mainly show that Sigma(p-1)(k=1) D-k/k(2) equivalent to 2(-1/p) Ep-3 (mod p) and Sigma(p-1)(k=1) S-k/m(k) equivalent to m(2)-6m+1/2m (1 - (m(2)-6m+1/p)) (mod p), where (-) is the Legendre symbol, E-0, E-1, E-2, ... are Euler numbers. and in is any integer not divisible by p. We also conjecture that Sigma(p-1)(k=1) D-k(2)/k(2) equivalent to -2q(p)(2)(2) (mod p) where q(p)(2) denotes the Fermat quotient (2(p-1) - 1)/p. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2387 / 2397
页数:11
相关论文
共 50 条
  • [11] Delannoy Numbers and Preferential Arrangements
    Chen, Kwang-Wu
    MATHEMATICS, 2019, 7 (03):
  • [12] A Class of Weighted Delannoy Numbers
    Grau, Jose Maria
    Oller-Marcen, Antonio M.
    Varona, Juan Luis
    FILOMAT, 2022, 36 (17) : 5985 - 6007
  • [13] NEW CONGRUENCES FOR SUMS INVOLVING APERY NUMBERS OR CENTRAL DELANNOY NUMBERS
    Guo, Victor J. W.
    Zeng, Jiang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (08) : 2003 - 2016
  • [14] A note on lattice chains and Delannoy numbers
    Caughman, John S.
    Haithcock, Clifford R.
    Veerman, J. J. P.
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2623 - 2628
  • [15] ON AN EXTREMAL PROBLEM RELATED TO THE DELANNOY NUMBERS
    Vassilev-Missana, Mladen V.
    Atanassov, Krassimir T.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2008, 14 (02) : 11 - 14
  • [16] Another description of the central Delannoy numbers
    Arregui, JL
    Vujic, D
    Castañeda, N
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (05): : 443 - 444
  • [17] Some properties of central Delannoy numbers
    Qi, Feng
    Cernanova, Viera
    Shi, Xiao-Ting
    Guo, Bai-Ni
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 328 : 101 - 115
  • [18] FOURTH PROBLEM AND SCHRODER NUMBERS
    COMTET, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (19): : 913 - &
  • [19] SCHRODER NUMBERS DIVISIBLE BY 3
    SCHOEN, C
    RANALDI, P
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (04): : 368 - 368
  • [20] Generalized Small Schroder numbers
    Huh, JiSun
    Park, SeungKyung
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):