On Delannoy numbers and Schroder numbers

被引:33
|
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Central Delannoy numbers; Euler numbers; Schroder numbers; CONGRUENCES;
D O I
10.1016/j.jnt.2011.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nth Delannoy number and the nth Schroder number given by D-n = Sigma(n)(k=0) (n k) (n + k k) and S-n = Sigma(n)(k=0) (n k) (n + k k) 1/k+1 respectively arise naturally from enumerative combinatorics. Let p be an odd prime. We mainly show that Sigma(p-1)(k=1) D-k/k(2) equivalent to 2(-1/p) Ep-3 (mod p) and Sigma(p-1)(k=1) S-k/m(k) equivalent to m(2)-6m+1/2m (1 - (m(2)-6m+1/p)) (mod p), where (-) is the Legendre symbol, E-0, E-1, E-2, ... are Euler numbers. and in is any integer not divisible by p. We also conjecture that Sigma(p-1)(k=1) D-k(2)/k(2) equivalent to -2q(p)(2)(2) (mod p) where q(p)(2) denotes the Fermat quotient (2(p-1) - 1)/p. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2387 / 2397
页数:11
相关论文
共 50 条