The Weierstrass-Mandelbrot process revisited

被引:16
|
作者
Szulga, J [1 ]
Molz, F
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Clemson Univ, Dept Environm Sci, Clemson, SC USA
基金
美国国家科学基金会;
关键词
fractional Brownian motion; Brownian motion; Weierstrass-Mandelbrot process; stationary increments; structure functions; Gaussian processes; self-similar processes; quasi-Gaussian processes; spectral representation; power spectrum;
D O I
10.1023/A:1010422315759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a functional central limit theorem for quasi-Gaussian processes. In particular, we prove that the limit of the Mandelbrot-Weierstrass process is a complex fractional Brownian motion.
引用
收藏
页码:1317 / 1348
页数:32
相关论文
共 50 条
  • [41] Control effects of Morlet wavelet term on Weierstrass–Mandelbrot function model
    L Zhang
    S T Liu
    C Yu
    Indian Journal of Physics, 2014, 88 : 867 - 874
  • [42] The stone-Weierstrass theorem revisited
    Rao, NV
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (08): : 726 - 729
  • [43] Stone-Weierstrass theorems revisited
    Timofte, V
    JOURNAL OF APPROXIMATION THEORY, 2005, 136 (01) : 45 - 59
  • [44] Stone-Weierstrass approximation revisited
    Kusraev, Anatoly G.
    Kutateladze, Semen S.
    QUAESTIONES MATHEMATICAE, 2024, 47 : 265 - 281
  • [45] The generalized Bolzano-Weierstrass property revisited
    de la Vega, Ramiro
    TOPOLOGY AND ITS APPLICATIONS, 2023, 323
  • [46] CONNECTIVITY PROPERTIES OF MANDELBROT PERCOLATION PROCESS
    CHAYES, JT
    CHAYES, L
    DURRETT, R
    PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (03) : 307 - 324
  • [47] Fractal-based numerical simulation of multivariate typhoon wind speeds utilizing weierstrass mandelbrot function
    Cai, Kang
    Huang, Mingfeng
    Li, Qiang
    Wang, Qing
    Ni, Yi-Qing
    Journal of Infrastructure Intelligence and Resilience, 2025, 4 (02):
  • [48] Refinements of Miller's Algorithm over Weierstrass Curves Revisited
    Le, Duc-Phong
    Liu, Chao-Liang
    COMPUTER JOURNAL, 2011, 54 (10): : 1582 - 1591
  • [49] A regularized representation of the fractional Laplacian in n dimensions and its relation to Weierstrass-Mandelbrot-type fractal functions
    Michelitsch, Thomas M.
    Maugin, Gerard A.
    Derogar, Shahram
    Rahman, Mujibur
    IMA JOURNAL OF APPLIED MATHEMATICS, 2014, 79 (05) : 753 - 777
  • [50] A regularized representation of the fractional Laplacian in n dimensions and its relation to Weierstrass-Mandelbrot-type fractal functions
    Michelitsch, Thomas M.
    Maugin, Gérard A.
    Derogar, Shahram
    Rahman, Mujibur
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2014, 79 (05): : 753 - 777