The Weierstrass-Mandelbrot process revisited

被引:16
|
作者
Szulga, J [1 ]
Molz, F
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Clemson Univ, Dept Environm Sci, Clemson, SC USA
基金
美国国家科学基金会;
关键词
fractional Brownian motion; Brownian motion; Weierstrass-Mandelbrot process; stationary increments; structure functions; Gaussian processes; self-similar processes; quasi-Gaussian processes; spectral representation; power spectrum;
D O I
10.1023/A:1010422315759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a functional central limit theorem for quasi-Gaussian processes. In particular, we prove that the limit of the Mandelbrot-Weierstrass process is a complex fractional Brownian motion.
引用
收藏
页码:1317 / 1348
页数:32
相关论文
共 50 条
  • [31] Study on Contact Spots of Fractal Rough Surfaces Based on Three-Dimensional Weierstrass-Mandelbrot Function
    Chen, Junxing
    Yang, Fei
    Luo, Kaiyu
    Wu, Yi
    Niu, Chunping
    Rong, Mingzhe
    PROCEEDINGS OF THE SIXTY-SECOND IEEE HOLM CONFERENCE ON ELECTRICAL CONTACTS, 2016, : 198 - 204
  • [32] Extended Methodology for DFA and DCCA: Application of Automatic Search Procedure and Correlation Map to the Weierstrass-Mandelbrot Functions
    Marinho, Euler B. S.
    Bassrei, Amin
    Andrade, Roberto F. S.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2021, 93 (04):
  • [33] Fractal Reconstruction of Microscopic Rough Surface for Soot Layer during Ceramic Filtration Based On Weierstrass-Mandelbrot Function
    Zhang, Wei
    Lu, Cheng
    Dong, Pengfei
    Fang, Yiwei
    Yin, Yanshan
    Hu, Zhangmao
    Xu, Huifang
    Ruan, Min
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (11) : 4033 - 4044
  • [34] Modeling of super-extreme events: An application to the hierarchical Weierstrass-Mandelbrot Continuous-time Random Walk
    T. R. Werner
    T. Gubiec
    R. Kutner
    D. Sornette
    The European Physical Journal Special Topics, 2012, 205 : 27 - 52
  • [35] Modeling of super-extreme events: An application to the hierarchical Weierstrass-Mandelbrot Continuous-time Random Walk
    Werner, T. R.
    Gubiec, T.
    Kutner, R.
    Sornette, D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 205 (01): : 27 - 52
  • [36] Determination of the fractal scaling parameter from simulated fractal-regular surface profiles based on the Weierstrass-Mandelbrot function
    Wang, Shao
    Shen, Ji
    Chan, Wai Kin
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2007, 129 (04): : 952 - 956
  • [37] Modeling of three-dimensional single rough rock fissures: A study on flow rate and fractal parameters using the Weierstrass-Mandelbrot function
    Cui, Wei
    Wang, Lixin
    Luo, Yanjun
    COMPUTERS AND GEOTECHNICS, 2022, 144
  • [38] Fractal Reconstruction of Microscopic Rough Surface for Soot Layer during Ceramic Filtration Based On Weierstrass-Mandelbrot Function (vol 57, pg 4033, 2018)
    Zhang, Wei
    Lu, Cheng
    Dong, Pengfei
    Fang, Yiwei
    Yin, Yanshan
    Hu, Zhangmao
    Xu, Huifang
    Ruan, Min
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (17) : 7416 - 7416
  • [39] 带限Weierstrass-Mandelbrot分形土壤表面与置于其上组合目标复合电磁散射特性仿真及分析
    王玉清
    刘鹏
    任新成
    朱小敏
    赵晔
    杨鹏举
    电波科学学报, 2021, 36 (02) : 303 - 312
  • [40] Riemann and Weierstrass walks revisited
    Almaguer, F-Javier
    Gonzalez Amezcua, Omar
    Morales-Castillo, Javier
    Soto-Villalobos, Roberto
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 518 - 526