The Weierstrass-Mandelbrot process revisited

被引:16
|
作者
Szulga, J [1 ]
Molz, F
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Clemson Univ, Dept Environm Sci, Clemson, SC USA
基金
美国国家科学基金会;
关键词
fractional Brownian motion; Brownian motion; Weierstrass-Mandelbrot process; stationary increments; structure functions; Gaussian processes; self-similar processes; quasi-Gaussian processes; spectral representation; power spectrum;
D O I
10.1023/A:1010422315759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a functional central limit theorem for quasi-Gaussian processes. In particular, we prove that the limit of the Mandelbrot-Weierstrass process is a complex fractional Brownian motion.
引用
收藏
页码:1317 / 1348
页数:32
相关论文
共 50 条
  • [21] Weierstrass-Mandelbrot分形曲面的多重分形谱
    吕建国
    戴结林
    宋学萍
    孙兆奇
    功能材料, 2008, (09) : 1574 - 1576
  • [22] An analytical model of thermal contact resistance based on the Weierstrass-Mandelbrot fractal function
    Jiang, S.
    Zheng, Y.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2010, 224 (C4) : 959 - 967
  • [23] Generalized Weierstrass-Mandelbrot with Disturbance for Big Data Applications in Economic and Financial Systems
    Zhang, Li
    2023 IEEE 8TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS, ICBDA, 2023, : 53 - 56
  • [24] 基于Weierstrass-Mandelbrot函数的分形风速脉动仿真
    刘磊
    胡非
    李军
    宋丽莉
    气候与环境研究, 2013, 18 (01) : 43 - 50
  • [25] 基于Weierstrass-Mandelbrot函数的岩体裂隙映射重构
    刘宏伟
    陈世江
    许有俊
    张旭
    鲍先凯
    岩土力学, 2024, 45 (10) : 3058 - 3070
  • [26] GENERALIZED WEIERSTRASS-MANDELBROT FUNCTION MODEL FOR ACTUAL STOCKS MARKETS INDEXES WITH NONLINEAR CHARACTERISTICS
    Zhang, L.
    Yu, C.
    Sun, J. Q.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (02)
  • [27] Scaling Region of Weierstrass-Mandelbrot Function: Improvement Strategies for Fractal Ideality and Signal Simulation
    Feng, Feng
    Zhang, Kexin
    Li, Xinghui
    Xia, Yousheng
    Yuan, Meng
    Feng, Pingfa
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [28] APPLICATION OF THE WEIERSTRASS-MANDELBROT FUNCTION TO THE SIMULATION OF ATMOSPHERIC SCALAR TURBULENCE: A STUDY FOR CARBON DIOXIDE
    Liu, Lei
    Shi, Yu
    Hu, Fei
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (04)
  • [29] Morphology differences between fractional Brownian motion and the Weierstrass-Mandelbrot function and corresponding Hurst evaluation
    Jiabin Dong
    Ying Wu
    Yi Jin
    Shunxi Liu
    Junling Zheng
    Wenhao Dong
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9
  • [30] Morphology differences between fractional Brownian motion and the Weierstrass-Mandelbrot function and corresponding Hurst evaluation
    Dong, Jiabin
    Wu, Ying
    Jin, Yi
    Liu, Shunxi
    Zheng, Junling
    Dong, Wenhao
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2023, 9 (01)