A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells

被引:8
|
作者
Wang, Xin [1 ,2 ]
Wang, Zongtao [3 ,4 ]
Li, Mingwei [1 ,2 ]
Tu, Lijun [1 ,2 ]
Wang, Ke [1 ,2 ]
Xiao, Dengping [1 ,2 ]
Guo, Qiang [3 ]
Zhou, Ming [5 ]
Wei, Xianwen [1 ,2 ]
Shi, Yongqiang [1 ,2 ,5 ]
Zhou, Erjun [4 ]
机构
[1] Anhui Normal Univ, Key Lab Funct Mol Solids, Minist Educ, Wuhu 241002, Peoples R China
[2] Anhui Normal Univ, Sch Chem & Mat Sci, Wuhu 241002, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Henan Inst Adv Technol, Zhengzhou 450001, Peoples R China
[4] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
[5] Southwest Petr Univ, Sch New Energy & Mat, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
wide bandgap; donor-acceptor; imide; polymer solar cells;
D O I
10.3390/polym14173590
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The molecular design of a wide-bandgap polymer donor is critical to achieve high-performance organic photovoltaic devices. Herein, a new dibenzo-fused quinoxalineimide (BPQI) is successfully synthesized as an electron-deficient building block to construct donor-acceptor (D-A)-type polymers, namely P(BPQI-BDT) and P(BPQI-BDTT), using benzodithiophene and its derivative, which bears different side chains, as the copolymerization units. These two polymers are used as a donor, and the narrow bandgap (2,20-((2Z,20Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno[2,'' 30 ':4 ',50]thieno[20,30:4,5]pyrrolo[3,2g]thieno[20,30:4,5]thieno[3,2-b]indole-2,10 diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) Y6 is used as an acceptor to fabricate bulk heterojunction polymer solar cell devices. Y6, as a non-fullerene receptor (NFA), has excellent electrochemical and optical properties, as well as a high efficiency of over 18%. The device, based on P(BPQI-BDTT):Y6, showed power conversion efficiencies (PCEs) of 6.31% with a J(SC) of 17.09 mA cm(-2), an open-circuit voltage (V-OC) of 0.82 V, and an FF of 44.78%. This study demonstrates that dibenzo-fused quinoxalineimide is a promising building block for developing wide-bandgap polymer donors.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Efficient and Stable Quasiplanar Heterojunction Solar Cells with an Acetoxy-Substituted Wide-Bandgap Polymer
    Li, Yan
    Chen, Hui
    Lai, Hanjian
    Lai, Xue
    Rehman, Tahir
    Zhu, Yulin
    Wang, Yunpeng
    Wu, Qinghe
    He, Feng
    ACS MATERIALS LETTERS, 2022, 4 (07): : 1322 - 1331
  • [32] Comparison Study of Wide Bandgap Polymer (PBDB-T) and Narrow Bandgap Polymer (PBDTTT-EFT) as Donor for Perylene Diimide Based Polymer Solar Cells
    Ye, Tengling
    Jin, Shan
    Kang, Cong
    Tian, Changhao
    Zhang, Xin
    Zhan, Chuanlang
    Lu, Shirong
    Kan, Zhipeng
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [33] A Wide-Bandgap Conjugated Polymer Based on Quinoxalino[6,5-f ]quinoxaline for Fullerene and Non-Fullerene Polymer Solar Cells
    Pang, Shuting
    Liu, Ligion
    Sun, Xiaofei
    Dong, Sheng
    Wang, Zhenfeng
    Zhang, Ruiwen
    Guo, Yiting
    Li, Weiwei
    Zheng, Nan
    Duan, Chunhui
    Huang, Fei
    Cao, Yong
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (13)
  • [34] A Novel Wide-Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells
    Zhang, Ying
    Liu, Delong
    Lau, Tsz-Ki
    Zhan, Lingling
    Shen, Dong
    Fong, Patrick W. K.
    Yan, Cenqi
    Zhang, Shaoqing
    Lu, Xinhui
    Lee, Chun-Sing
    Hou, Jianhui
    Chen, Hongzheng
    Li, Gang
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (27)
  • [35] Bithieno[3,4-c]pyrrole-4,6-dione-Based Wide-Bandgap Donor Polymers for Efficient Polymer Solar Cells
    Jiang, Yu
    Yuan, Hua
    Pan, Hui
    Zhang, Guangjun
    MACROMOLECULAR RAPID COMMUNICATIONS, 2025, 46 (01)
  • [36] Efficient organic solar cells with small energy losses based on a wide-bandgap trialkylsilyl-substituted donor polymer and a non-fullerene acceptor
    Bin, Haijun
    Van der Po, Tom P. A.
    Li, Junyu
    van Gorkom, Bas T.
    Wienk, Martijn M.
    Janssen, Rene A. J.
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [37] Chain Engineering of Benzodifuran-Based Wide-Bandgap Polymers for Efficient Non-Fullerene Polymer Solar Cells
    Zhu, Ruoxi
    Wang, Zhen
    Gao, Yueyue
    Zheng, Zhi
    Guo, Fengyun
    Gao, Shiyong
    Lu, Kun
    Zhao, Liancheng
    Zhang, Yong
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (19)
  • [38] Wide-Bandgap Small Molecular Acceptors Based on a Weak Electron-Withdrawing Moiety for Efficient Polymer Solar Cells
    Gong, Yanting
    Kan, Zhipeng
    Xu, Weidong
    Wang, Yang
    AlShammari, Sanaa H.
    Laquai, Frederic
    Lai, Wen-Yong
    Huang, Wei
    SOLAR RRL, 2018, 2 (10):
  • [39] A wide-bandgap π-conjugated polymer for high-performance ternary organic solar cells with an efficiency of 17.40%
    Gokulnath, Thavamani
    Choi, Jungmin
    Park, Ho-Yeol
    Sung, Kyungmin
    Do, Yeongju
    Park, Hyungjin
    Kim, Junyoung
    Reddy, Saripally Sudhaker
    Kim, Jehan
    Song, Myungkwan
    Yoon, Jinhwan
    Jin, Sung-Ho
    NANO ENERGY, 2021, 89
  • [40] Improved performance of non-fullerene polymer solar cells using wide-bandgap random terpolymers
    Li, Kang
    Hu, Zhicheng
    Zeng, Zhaomiyi
    Huang, Zhenqiang
    Zhong, Wenkai
    Ying, Lei
    Huang, Fei
    Cao, Yong
    ORGANIC ELECTRONICS, 2018, 57 : 317 - 322