A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells

被引:8
|
作者
Wang, Xin [1 ,2 ]
Wang, Zongtao [3 ,4 ]
Li, Mingwei [1 ,2 ]
Tu, Lijun [1 ,2 ]
Wang, Ke [1 ,2 ]
Xiao, Dengping [1 ,2 ]
Guo, Qiang [3 ]
Zhou, Ming [5 ]
Wei, Xianwen [1 ,2 ]
Shi, Yongqiang [1 ,2 ,5 ]
Zhou, Erjun [4 ]
机构
[1] Anhui Normal Univ, Key Lab Funct Mol Solids, Minist Educ, Wuhu 241002, Peoples R China
[2] Anhui Normal Univ, Sch Chem & Mat Sci, Wuhu 241002, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Henan Inst Adv Technol, Zhengzhou 450001, Peoples R China
[4] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
[5] Southwest Petr Univ, Sch New Energy & Mat, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
wide bandgap; donor-acceptor; imide; polymer solar cells;
D O I
10.3390/polym14173590
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The molecular design of a wide-bandgap polymer donor is critical to achieve high-performance organic photovoltaic devices. Herein, a new dibenzo-fused quinoxalineimide (BPQI) is successfully synthesized as an electron-deficient building block to construct donor-acceptor (D-A)-type polymers, namely P(BPQI-BDT) and P(BPQI-BDTT), using benzodithiophene and its derivative, which bears different side chains, as the copolymerization units. These two polymers are used as a donor, and the narrow bandgap (2,20-((2Z,20Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno[2,'' 30 ':4 ',50]thieno[20,30:4,5]pyrrolo[3,2g]thieno[20,30:4,5]thieno[3,2-b]indole-2,10 diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) Y6 is used as an acceptor to fabricate bulk heterojunction polymer solar cell devices. Y6, as a non-fullerene receptor (NFA), has excellent electrochemical and optical properties, as well as a high efficiency of over 18%. The device, based on P(BPQI-BDTT):Y6, showed power conversion efficiencies (PCEs) of 6.31% with a J(SC) of 17.09 mA cm(-2), an open-circuit voltage (V-OC) of 0.82 V, and an FF of 44.78%. This study demonstrates that dibenzo-fused quinoxalineimide is a promising building block for developing wide-bandgap polymer donors.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Backbone regulation of a bithiazole-based wide bandgap polymer donor by introducing thiophene bridges towards efficient polymer solar cells
    Shang, Ziya
    Li, Zechen
    Qin, Shucheng
    Sun, Chenkai
    Meng, Lei
    Li, Yongfang
    ORGANIC ELECTRONICS, 2021, 92
  • [42] Efficient Polymer Solar Cells Facilitated by Halogenated Substituted Wide-Bandgap Polymers and a Backbone Twisted Low-Bandgap Acceptor
    Liu, Shujuan
    Wu, Haimei
    Zhao, Baofeng
    Wang, Weiping
    Zhou, Yuchen
    Xue, Zeyu
    Ding, Kai
    Cong, Zhiyuan
    Gao, Chao
    CHEMISTRYSELECT, 2022, 7 (29):
  • [43] Electrodeposited Wide-bandgap Semiconducting ZnO and CuSCN Thin Films and Nanowires for Interface Engineering of Polymer Solar Cells
    Chappaz-Gillot, C.
    Berson, S.
    Sanchez, S.
    Salazar, R.
    Lechene, B.
    Aldakov, D.
    Delaye, V.
    Guillerez, S.
    Ivanova, V.
    WIDE-BANDGAP SEMICONDUCTOR MATERIALS AND DEVICES 14, 2013, 53 (02): : 107 - 117
  • [44] Influence of Alkyl Substitution Position on Wide-Bandgap Polymers in High-Efficiency Nonfullerene Polymer Solar Cells
    Guo, Qing
    Li, Wanbin
    Li, Guangda
    Wang, Kun
    Guo, Xia
    Zhang, Maojie
    Li, Yongfang
    Wong, Wai-Yeung
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (21)
  • [45] A New Wide Bandgap Donor Polymer for Efficient Nonfullerene Organic Solar Cells with a Large Open-Circuit Voltage
    Tang, Yumin
    Sun, Huiliang
    Wu, Ziang
    Zhang, Yujie
    Zhang, Guangye
    Su, Mengyao
    Zhou, Xin
    Wu, Xia
    Sun, Weipeng
    Zhang, Xianhe
    Liu, Bin
    Chen, Wei
    Liao, Qiaogan
    Woo, Han Young
    Guo, Xugang
    ADVANCED SCIENCE, 2019, 6 (21)
  • [46] A new narrow bandgap polymer as donor material for high performance non-fullerene polymer solar cells
    Li, Guangda
    Li, Wanbin
    Guo, Xia
    Guo, Bing
    Su, Wenyan
    Xu, Zhuo
    Zhang, Maojie
    ORGANIC ELECTRONICS, 2019, 64 : 241 - 246
  • [47] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [48] Recent Advances in Wide-Bandgap Perovskite Solar Cells
    Mei, Jianjun
    Yan, Feng
    ADVANCED MATERIALS, 2025,
  • [49] High-performance non-fullerene polymer solar cells based on naphthobistriazole wide bandgap donor copolymers
    Li, Li
    Liu, Gongchu
    Zhang, Jie
    Wang, Zhenfeng
    Jia, Tao
    Hu, Yingyuan
    Cao, Congcong
    Zhang, Kai
    Huang, Fei
    Cao, Yong
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (16) : 4709 - 4715
  • [50] High-performance ternary polymer solar cells using wide-bandgap biaxially extended octithiophene-based conjugated polymers
    Tsai, Chang-Hung
    Su, Yu-An
    Lin, Po-Chen
    Shih, Chien-Chung
    Wu, Hung-Chin
    Chen, Wen-Chang
    Chueh, Chu-Chen
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (26) : 6920 - 6928