Efficient organic solar cells with small energy losses based on a wide-bandgap trialkylsilyl-substituted donor polymer and a non-fullerene acceptor

被引:25
|
作者
Bin, Haijun [1 ,2 ]
Van der Po, Tom P. A. [1 ,2 ]
Li, Junyu [1 ,2 ]
van Gorkom, Bas T. [1 ,2 ]
Wienk, Martijn M. [1 ,2 ]
Janssen, Rene A. J. [1 ,2 ,3 ]
机构
[1] Eindhoven Univ Technol, Mol Mat & Nanosyst, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Inst Complex Mol Syst, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Dutch Inst Fundamental Energy Res, Zaale 20, NL-5612 AJ Eindhoven, Netherlands
关键词
Organic solar cell; Conjugated polymer; Non-fullerene acceptor; Low energy loss; Morphology; CONJUGATED POLYMERS; STATES;
D O I
10.1016/j.cej.2022.134878
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Efficient organic solar cells based on a blend of PBDS-T as a donor polymer and BTP-eC9 as non-fullerene acceptor are presented and characterized. PBDS-T is an alternating copolymer that comprises easily accessible electron-rich trialkylsilyl-substituted benzodithiophene and electron-deficient benzodithiophene-4,8-dione units and that can be efficiently and reproducibly synthesized in high molecular weights, while keeping good solubility. PBDS-T exhibits a strong absorption between 450 and 700 nm and combines a wide optical bandgap of 1.86 eV, with low-lying energy levels, and a face-on molecular orientation in thin films. Organic solar cells prepared by blending PBDS-T with BTP-eC9 show considerable performance when as-cast films are annealed in solvent vapor and present a high open-circuit voltage of 0.86 V, a low photon-energy loss of 0.53 eV, and an internal quantum efficiency of 93%. The power conversion efficiency reaches 16.4%, which -to the best of our knowledge -is the highest for a conjugated polymer comprising trialkylsilyl side chains in combination with a Y6-based non-fullerene acceptor. Specifically, the trialkylsilyl side-chains of PBDS-T reduce synthetic complexity, result in a low energy loss by ensuring low energetic disorder, and provide competitive device performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss
    Chen, Shangshang
    Liu, Yuhang
    Zhang, Lin
    Chow, Philip C. Y.
    Wang, Zheng
    Zhang, Guangye
    Ma, Wei
    Yan, He
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (18) : 6298 - 6301
  • [2] Efficient Non-Fullerene Organic Solar Cells Based on a Wide-Bandgap Polymer Donor Containing an Alkylthiophenyl-Substituted Benzodithiophene Moiety
    Xie, Ruihao
    Ying, Lei
    An, Kang
    Zhong, Wenkai
    Yin, Qingwu
    Liao, Shengzu
    Huang, Fei
    Cao, Yong
    CHEMPHYSCHEM, 2019, 20 (20) : 2668 - 2673
  • [3] Wide-bandgap polymer donors for non-fullerene organic solar cells
    Cao, Jiamin
    Yi, Lifei
    Zhang, Lixiu
    Zou, Yingping
    Ding, Liming
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 11 (01) : 17 - 30
  • [4] Side-chain engineering for efficient non-fullerene polymer solar cells based on a wide-bandgap polymer donor
    Fan, Qunping
    Su, Wenyan
    Guo, Xia
    Wang, Yan
    Chen, Juan
    Ye, Chennan
    Zhang, Maojie
    Li, Yongfang
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (19) : 9204 - 9209
  • [5] A wide-bandgap nonplanar small molecule acceptor having indenofluorene core for non-fullerene polymer solar cells
    Wang, Liuchang
    Cheng, Qing
    Li, Pengna
    Wang, Weiping
    Liu, Jianqun
    Zhao, Baofeng
    Wu, Haimei
    Cong, Zhiyuan
    Gao, Chao
    DYES AND PIGMENTS, 2020, 180
  • [6] Wide-bandgap donor polymers based on a dicyanodivinyl indacenodithiophene unit for non-fullerene polymer solar cells
    He, Baitian
    Chen, Yulin
    Chen, Jinglong
    Chen, Songxi
    Xiao, Manjun
    Chen, Guiting
    Dai, Chuanbo
    RSC ADVANCES, 2021, 11 (35) : 21397 - 21404
  • [7] Wide Bandgap Polymer Donor with Acrylate Side Chains for Non-Fullerene Acceptor-Based Organic Solar Cells
    Yuan, Yi
    Kumar, Pankaj
    Ngai, Jenner H. L.
    Gao, Xiguang
    Li, Xu
    Liu, Haitao
    Wang, Jinliang
    Li, Yuning
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (20)
  • [8] Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells
    Firdaus, Yuliar
    He, Qiao
    Lin, Yuanbao
    Nugroho, Ferry Anggoro Ardy
    Le Corre, Vincent M.
    Yengel, Emre
    Balawi, Ahmed H.
    Seitkhan, Akmaral
    Laquai, Frédéric
    Langhammer, Christoph
    Liu, Feng
    Heeney, Martin
    Anthopoulos, Thomas D.
    Firdaus, Yuliar (yuliar.firdaus@kaust.edu.sa), 1600, Royal Society of Chemistry (08): : 1164 - 1175
  • [9] Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells
    Firdaus, Yuliar
    He, Qiao
    Lin, Yuanbao
    Nugroho, Ferry Anggoro Ardy
    Le Corre, Vincent M.
    Yengel, Emre
    Balawi, Ahmed H.
    Seitkhan, Akmaral
    Laquai, Frederic
    Langhammer, Christoph
    Liu, Feng
    Heeney, Martin
    Anthopoulos, Thomas D.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (03) : 1164 - 1175
  • [10] Wide bandgap polymer donors for high efficiency non-fullerene acceptor based organic solar cells
    He, Keqiang
    Kumar, Pankaj
    Yuan, Yi
    Li, Yuning
    MATERIALS ADVANCES, 2021, 2 (01): : 115 - 145