An improved method for nonlinear parameter estimation: a case study of the Rossler model

被引:6
|
作者
He, Wen-Ping [1 ]
Wang, Liu [2 ]
Jiang, Yun-Di [1 ]
Wan, Shi-Quan [3 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Yangzhou Meteorol Off, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY-ANALYSIS; DATA ASSIMILATION; CLIMATE; SCHEME; STATE;
D O I
10.1007/s00704-015-1528-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system-Rossler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 50 条
  • [41] Parameter and state estimation in a Neisseria meningitidis model: A study case of Niger
    Bowong, S.
    Mountaga, L.
    Bah, A.
    Tewa, J. J.
    Kurths, J.
    CHAOS, 2016, 26 (12)
  • [42] Kinetic parameter estimation for a multiresponse nonlinear reaction model
    Routray, K
    Deo, G
    AICHE JOURNAL, 2005, 51 (06) : 1733 - 1746
  • [43] Nonlinear dynamic load modelling: Model and parameter estimation
    Ju, P
    Handschin, E
    Karlsson, D
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) : 1689 - 1694
  • [44] MINSQ - NONLINEAR PARAMETER-ESTIMATION AND MODEL DEVELOPMENT
    DAVIES, S
    MASTEN, S
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1990, 40 (09): : 1291 - 1291
  • [45] IMPROVED PARAMETER ESTIMATION
    BOX, MJ
    TECHNOMETRICS, 1970, 12 (02) : 219 - &
  • [46] NONLINEAR PARAMETER ESTIMATION
    STEEN, NM
    BYRNE, GD
    SIAM REVIEW, 1973, 15 (01) : 262 - &
  • [47] On nonlinear parameter estimation
    Magnevall, M.
    Josefsson, A.
    Ahlin, K.
    Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8, 2006, : 2761 - 2775
  • [48] NONLINEAR PARAMETER ESTIMATION
    MILLER, AL
    OPERATIONAL RESEARCH QUARTERLY, 1972, 23 (03) : 393 - &
  • [49] Improved Accuracy of Nonlinear Parameter Estimation with LAV and Interval Arithmetic Methods
    Munoz, Humberto
    Gwee, Nigel
    IMETI 2008: INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING AND TECHNOLOGICAL INNOVATION, VOL II, PROCEEDINGS, 2008, : 181 - 186
  • [50] Robust Parameter Estimation Method for Bilinear Model
    Ismail, Mohd Isfahani
    Ali, Halina
    Yahaya, Sharipah Soaad S.
    INNOVATION AND ANALYTICS CONFERENCE AND EXHIBITION (IACE 2015), 2015, 1691