An improved method for nonlinear parameter estimation: a case study of the Rossler model

被引:6
|
作者
He, Wen-Ping [1 ]
Wang, Liu [2 ]
Jiang, Yun-Di [1 ]
Wan, Shi-Quan [3 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Yangzhou Meteorol Off, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY-ANALYSIS; DATA ASSIMILATION; CLIMATE; SCHEME; STATE;
D O I
10.1007/s00704-015-1528-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system-Rossler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 50 条
  • [21] Parameter estimation of nonlinear chaotic system by improved TLBO strategy
    Hongjun Zhang
    Baozhu Li
    Jun Zhang
    Yuanhui Qin
    Xiaoyi Feng
    Bo Liu
    Soft Computing, 2016, 20 : 4965 - 4980
  • [22] Improved genetic algorithms for varying parameter estimation in nonlinear system
    Gao, Tiehong
    Li, Chongxiao
    Han, Yanfang
    Tao, Mei
    Shu Ju Cai Ji Yu Chu Li/Journal of Data Acquisition and Processing, 2002, 17 (03):
  • [23] Parameter estimation of nonlinear chaotic system by improved TLBO strategy
    Zhang, Hongjun
    Li, Baozhu
    Zhang, Jun
    Qin, Yuanhui
    Feng, Xiaoyi
    Liu, Bo
    SOFT COMPUTING, 2016, 20 (12) : 4965 - 4980
  • [24] Study on joint Bayesian model selection and parameter estimation method of GTD model
    Shi ZhiGuang
    Zhou JianXiong
    Zhao HongZhong
    Fu Qiang
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2007, 50 (02): : 261 - 272
  • [26] Study on joint Bayesian model selection and parameter estimation method of GTD model
    ZhiGuang Shi
    JianXiong Zhou
    HongZhong Zhao
    Qiang Fu
    Science in China Series F: Information Sciences, 2007, 50 : 261 - 272
  • [27] Novel nonlinear least square parameter estimation method for Jelinski-Moranda model
    LMIB, Department of Mathematics, Beihang University, Beijing 100083, China
    不详
    不详
    Xitong Fangzhen Xuebao, 2008, 18 (4791-4794):
  • [28] Target Positioning and Parameter Estimation of Magnetic Dipole Model With Nonlinear Least Square Method
    Li, Yuxiang
    Wang, Shuai
    Sun, Weimin
    2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014), 2014, : 923 - 927
  • [29] Improved method of parameter estimation based on measurement residuals
    He, Hua
    Chai, Jinghui
    Wei, Zhinong
    Gu, Quan
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2007, 31 (04): : 33 - 36
  • [30] A method for simultaneous state and parameter estimation in nonlinear systems
    Haessig, D
    Friedland, B
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 947 - 951