An improved method for nonlinear parameter estimation: a case study of the Rossler model

被引:6
|
作者
He, Wen-Ping [1 ]
Wang, Liu [2 ]
Jiang, Yun-Di [1 ]
Wan, Shi-Quan [3 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Yangzhou Meteorol Off, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY-ANALYSIS; DATA ASSIMILATION; CLIMATE; SCHEME; STATE;
D O I
10.1007/s00704-015-1528-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system-Rossler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 50 条
  • [31] A Parameter Estimation Method using Nonlinear Least Squares
    Oh, Suna
    Song, Jongwoo
    KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (03) : 431 - 440
  • [32] Separable Parameter Estimation Method for Nonlinear Biological Systems
    Wu, Fang-Xiang
    Mu, Lei
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 614 - 617
  • [33] A new method for parameter estimation in nonlinear dynamical equations
    Wang, Liu
    He, Wen-Ping
    Liao, Le-Jian
    Wan, Shi-Quan
    He, Tao
    THEORETICAL AND APPLIED CLIMATOLOGY, 2015, 119 (1-2) : 193 - 202
  • [34] A Novel Nonlinear Parameter Estimation Method of Soft Tissues
    Qianqian Tong
    Zhiyong Yuan
    Mianlun Zheng
    Xiangyun Liao
    Weixu Zhu
    Guian Zhang
    Genomics,Proteomics & Bioinformatics, 2017, (06) : 371 - 380
  • [35] A direct parameter estimation method for weak nonlinear systems
    Weiland, M
    Link, M
    PROCEEDINGS OF THE 14TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I & II, 1996, 2768 : 525 - 531
  • [36] A new method for parameter estimation in nonlinear dynamical equations
    Liu Wang
    Wen-Ping He
    Le-Jian Liao
    Shi-Quan Wan
    Tao He
    Theoretical and Applied Climatology, 2015, 119 : 193 - 202
  • [37] A Novel Nonlinear Parameter Estimation Method of Soft Tissues
    Tong, Qianqian
    Yuan, Zhiyong
    Zheng, Mianlun
    Liao, Xiangyun
    Zhu, Weixu
    Zhang, Guian
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2017, 15 (06) : 371 - 380
  • [38] GLS Integrity Estimation Based on Improved EM Parameter Estimation Method
    Thong Lunlong
    Zhang Zhuoxuan
    Fan Zhendong
    2020 IEEE INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (ICESS), 2020,
  • [39] A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm
    Ren, Gong
    Yang, Renhuan
    Yang, Renyu
    Zhang, Pei
    Yang, Xiuzeng
    Xu, Chuangbiao
    Hu, Baoguo
    Zhang, Huatao
    Lu, Yaosheng
    Cai, Yanning
    MODERN PHYSICS LETTERS B, 2019, 33 (07):
  • [40] Improved Nonlinear Muskingum Model with Variable Exponent Parameter
    Easa, Said M.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2013, 18 (12) : 1790 - 1794