An improved method for nonlinear parameter estimation: a case study of the Rossler model

被引:6
|
作者
He, Wen-Ping [1 ]
Wang, Liu [2 ]
Jiang, Yun-Di [1 ]
Wan, Shi-Quan [3 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Yangzhou Meteorol Off, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY-ANALYSIS; DATA ASSIMILATION; CLIMATE; SCHEME; STATE;
D O I
10.1007/s00704-015-1528-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system-Rossler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 50 条
  • [1] An improved method for nonlinear parameter estimation: a case study of the Rössler model
    Wen-Ping He
    Liu Wang
    Yun-Di Jiang
    Shi-Quan Wan
    Theoretical and Applied Climatology, 2016, 125 : 521 - 528
  • [2] Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method
    Niazkar, Majid
    Afzali, Seied Hosein
    HYDROLOGY RESEARCH, 2017, 48 (05): : 1253 - 1267
  • [3] An improved algorithm of nonlinear estimation for the Casson model rheological parameter
    Yan, J. (yan1975@126.com), 1600, Science Press (34):
  • [4] A robust method for nonlinear parameter estimation illustrated on a toxicological model
    Klepper, O
    Bedaux, JJM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) : 1677 - 1686
  • [5] NONLINEAR PARAMETER-ESTIMATION - A CASE-STUDY COMPARISON
    BIEGLER, LT
    DAMIANO, JJ
    BLAU, GE
    AICHE JOURNAL, 1986, 32 (01) : 29 - 45
  • [6] Parameter estimation with improved model prediction for over-parametrized nonlinear systems
    Chen, Weifeng
    Wang, Baojia
    Biegler, Lorenz T.
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 157
  • [7] NONLINEAR METHOD FOR PARAMETER ESTIMATION.
    Shchetilov, S.I.
    Isaiko, O.M.
    Cosmic Research (English translation of Kosmicheskie Issledovaniya), 1981, 19 (02): : 144 - 147
  • [8] A Method on Parameter Estimation of Nonlinear Systems
    Horio, Makoto
    Moriomto, Jiro
    Tabuchi, Toshiaki
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1004 - 1007
  • [9] Improved MPC Method Based on Model Parameter Online Estimation for MMC
    Chen, Yu
    Wang, Zhen
    Wu, Dali
    Fan, Hua
    Wang, Yongmao
    Guo, Yingxiang
    2024 7TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING, REPE 2024, 2024, : 364 - 368
  • [10] An improved method for SRC parameter estimation for the CEC PV module model
    Laudani, A.
    Lozito, G. M.
    Mancilla-David, F.
    Riganti-Fulginei, F.
    Salvini, A.
    SOLAR ENERGY, 2015, 120 : 525 - 535