Approximation by a Generalization of the Jakimovski-Leviatan Operators

被引:4
|
作者
Ari, Didem Aydin [1 ]
Serenbay, Sevilay Kirci [2 ]
机构
[1] Kirikkale Univ, Kirikkale, Turkey
[2] Harran Univ, Sanliurfa, Turkey
关键词
Jakimovski-Leviatan operator; Lipschitz class; weighted modulus of continuity; weighted spaces; rate of convergence;
D O I
10.2298/FIL1908345A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Kantorovich type generalization of Jakimovski-Leviatan operators constructed by A. Jakimovski and D. Leviatan (1969) and the theorems on convergence and the degree of convergence are established. Furthermore, we study the convergence of these operators in a weighted space of functions on [0, infinity).
引用
收藏
页码:2345 / 2353
页数:9
相关论文
共 50 条
  • [31] On the Chlodowsky variant of Jakimovski-Leviatan-Paltanea Operators
    Dalmanoglu, Ozge
    Orkcu, Mediha
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (03): : 821 - 833
  • [32] Approximation by Szasz-Jakimovski-Leviatan-Type Operators via Aid of Appell Polynomials
    Nasiruzzaman, Md
    Aljohani, A. F.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [33] A sequence of Appell polynomials and the associated Jakimovski–Leviatan operators
    Ana-Maria Acu
    Ioan Cristian Buscu
    Ioan Rasa
    Analysis and Mathematical Physics, 2021, 11
  • [34] APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS
    Agrawal, P. N.
    Kumar, Ajay
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1522 - 1536
  • [35] Approximation by q-analogue of Jakimovski–Leviatan operators involving q-Appell polynomials
    M. Mursaleen
    Khursheed J. Ansari
    Md Nasiruzzaman
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 891 - 900
  • [36] Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus
    Alotaibi, Abdullah
    Mursaleen, M.
    AIMS MATHEMATICS, 2020, 5 (04): : 3019 - 3034
  • [37] Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bogel Space
    Alotaibi, Abdullah
    MATHEMATICS, 2022, 10 (05)
  • [38] On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers
    Alotaibi, Abdullah
    MATHEMATICS, 2023, 11 (04)
  • [39] On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [40] Approximation using Jakimovski–Leviatan operators of Durrmeyer type with 2D-Appell polynomials
    Manoj Kumar
    Nusrat Raza
    M. Mursaleen
    Journal of Inequalities and Applications, 2025 (1)