On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers

被引:4
|
作者
Alotaibi, Abdullah [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah 21589, Saudi Arabia
关键词
bivariate functions; weight function; Dunkl analogue; Appell polynomial; Szasz operator; Szasz-Jakimovski-Levitian operator; Lipschitz function; PARAMETRIC-EXTENSION; DUNKL GENERALIZATION; CONVERGENCE; KOROVKIN;
D O I
10.3390/math11041009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the bivariate Szasz-Jakimovski-Leviatan-type operators in Dunkl form using the unbounded sequences alpha(n), beta(m) and xi(m) of positive numbers. Then, we obtain the rate of convergence in terms of the weighted modulus of continuity of two variables and weighted approximation theorems for our operators. Moreover, we provide the degree of convergence with the help of bivariate Lipschitz-maximal functions and obtain the direct theorem.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Approximation by Szasz-Jakimovski-Leviatan-Type Operators via Aid of Appell Polynomials
    Nasiruzzaman, Md
    Aljohani, A. F.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [2] On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators
    Karateke S.
    Zontul M.
    Mishra V.N.
    Gairola A.R.
    La Matematica, 2024, 3 (1): : 211 - 233
  • [3] Generalization of Jakimovski-Leviatan type Szasz operators
    Sucu, Sezgin
    Varma, Serhan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 977 - 983
  • [4] CONVERGENCE ON SEQUENCES OF SZASZ-JAKIMOVSKI-LEVIATAN TYPE OPERATORS AND RELATED RESULTS
    Nasiruzzaman, Mohammad
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (02): : 218 - 230
  • [5] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [6] Approximation by Jakimovski–Leviatan Type Operators on a Complex Domain
    Sezgin Sucu
    Ertan Ibikli
    Complex Analysis and Operator Theory, 2014, 8 : 177 - 188
  • [7] Approximation by Jakimovski-Leviatan Type Operators on a Complex Domain
    Sucu, Sezgin
    Ibikli, Ertan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) : 177 - 188
  • [8] APPROXIMATION BY STANCU TYPE JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS
    Kumar, Alok
    Vandana
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 936 - 948
  • [9] Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators
    Mursaleen, M.
    Rahman, Shagufta
    Ansari, Khursheed J.
    FILOMAT, 2019, 33 (06) : 1517 - 1530
  • [10] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    FILOMAT, 2016, 30 (01) : 29 - 39