On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers

被引:4
|
作者
Alotaibi, Abdullah [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah 21589, Saudi Arabia
关键词
bivariate functions; weight function; Dunkl analogue; Appell polynomial; Szasz operator; Szasz-Jakimovski-Levitian operator; Lipschitz function; PARAMETRIC-EXTENSION; DUNKL GENERALIZATION; CONVERGENCE; KOROVKIN;
D O I
10.3390/math11041009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the bivariate Szasz-Jakimovski-Leviatan-type operators in Dunkl form using the unbounded sequences alpha(n), beta(m) and xi(m) of positive numbers. Then, we obtain the rate of convergence in terms of the weighted modulus of continuity of two variables and weighted approximation theorems for our operators. Moreover, we provide the degree of convergence with the help of bivariate Lipschitz-maximal functions and obtain the direct theorem.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS
    Dalmanoglu, Ozge
    Serenbay, Sevilay Kirci
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2016, 65 (01): : 157 - 169
  • [12] Approximation by a Generalization of the Jakimovski-Leviatan Operators
    Ari, Didem Aydin
    Serenbay, Sevilay Kirci
    FILOMAT, 2019, 33 (08) : 2345 - 2353
  • [13] Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators
    Trapti Neer
    Ana Maria Acu
    P. N. Agrawal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3445 - 3459
  • [14] Approximation for Jakimovski–Leviatan–Pǎltǎnea operators
    Verma D.K.
    Gupta V.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2015, 61 (2) : 367 - 380
  • [15] Degree of approximation by Chlodowsky variant of Jakimovski-Leviatan-Durrmeyer type operators
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, P. N.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3445 - 3459
  • [16] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [17] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [18] Approximation by Jakimovski–Leviatan-beta operators in weighted space
    M. Nasiruzzaman
    M. Mursaleen
    Advances in Difference Equations, 2020
  • [19] Approximation by Jakimovski-Leviatan-beta operators in weighted space
    Nasiruzzaman, M.
    Mursaleen, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [20] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2021