Generalization of Jakimovski-Leviatan type Szasz operators

被引:11
|
作者
Sucu, Sezgin [1 ]
Varma, Serhan [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
关键词
Szasz operator; Modulus of continuity; Rate of convergence; Sheffer polynomials; Meixner polynomials;
D O I
10.1016/j.amc.2015.08.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to give a Stancu type generalization of Jakimovski-Leviatan type Szasz operators defined by means of the Sheffer polynomials. We obtain convergence prop erties of our operators with the help of Korovkin theorem and the order of approximation by using classical and second modulus of continuity. Explicit examples with our operators including Meixner polynomials and the 2-orthogonal polynomials of Laguerre type are given. We present two significant numerical mathematical algorithms as examples for the error estimation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 50 条
  • [1] Approximation by a Generalization of the Jakimovski-Leviatan Operators
    Ari, Didem Aydin
    Serenbay, Sevilay Kirci
    FILOMAT, 2019, 33 (08) : 2345 - 2353
  • [2] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [3] Approximation by Jakimovski-Leviatan Type Operators on a Complex Domain
    Sucu, Sezgin
    Ibikli, Ertan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) : 177 - 188
  • [4] On Voronovskaya Type Result for Generalized Jakimovski-Leviatan Operators
    Yilmaz, Mine Menekse
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [5] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [6] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    FILOMAT, 2016, 30 (01) : 29 - 39
  • [7] Asymptotic expansion of the Jakimovski-Leviatan operators and their derivatives
    Abel, U
    Ivan, M
    FUNCTIONS, SERIES, OPERATORS: ALEXITS MEMORIAL CONFERENCE, 2002, : 103 - 119
  • [8] Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials
    Gupta, Pooja
    Acu, Ana Maria
    Agrawal, Purshottam Narain
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 73 - 82
  • [9] A sequence of Appell polynomials and the associated Jakimovski-Leviatan operators
    Acu, Ana-Maria
    Buscu, Ioan Cristian
    Rasa, Ioan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [10] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024