Generalization of Jakimovski-Leviatan type Szasz operators

被引:11
|
作者
Sucu, Sezgin [1 ]
Varma, Serhan [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
关键词
Szasz operator; Modulus of continuity; Rate of convergence; Sheffer polynomials; Meixner polynomials;
D O I
10.1016/j.amc.2015.08.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to give a Stancu type generalization of Jakimovski-Leviatan type Szasz operators defined by means of the Sheffer polynomials. We obtain convergence prop erties of our operators with the help of Korovkin theorem and the order of approximation by using classical and second modulus of continuity. Explicit examples with our operators including Meixner polynomials and the 2-orthogonal polynomials of Laguerre type are given. We present two significant numerical mathematical algorithms as examples for the error estimation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 50 条
  • [31] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19
  • [32] Approximation by Jakimovski–Leviatan-beta operators in weighted space
    M. Nasiruzzaman
    M. Mursaleen
    Advances in Difference Equations, 2020
  • [33] Approximation by Jakimovski-Leviatan-beta operators in weighted space
    Nasiruzzaman, M.
    Mursaleen, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [34] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2021
  • [35] Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus
    Alotaibi, Abdullah
    Mursaleen, M.
    AIMS MATHEMATICS, 2020, 5 (04): : 3019 - 3034
  • [36] Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bogel Space
    Alotaibi, Abdullah
    MATHEMATICS, 2022, 10 (05)
  • [37] On Jakimovski-Leviatan-Paltanea approximating operators involving Boas-Buck-type polynomials
    Ansari, Khursheed J.
    Salman, M. A.
    Mursaleen, M.
    Al-Abied, A. H. H.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (07) : 3018 - 3025
  • [38] On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [39] Approximation using Jakimovski–Leviatan operators of Durrmeyer type with 2D-Appell polynomials
    Manoj Kumar
    Nusrat Raza
    M. Mursaleen
    Journal of Inequalities and Applications, 2025 (1)
  • [40] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265