Approximation by a Generalization of the Jakimovski-Leviatan Operators

被引:4
|
作者
Ari, Didem Aydin [1 ]
Serenbay, Sevilay Kirci [2 ]
机构
[1] Kirikkale Univ, Kirikkale, Turkey
[2] Harran Univ, Sanliurfa, Turkey
关键词
Jakimovski-Leviatan operator; Lipschitz class; weighted modulus of continuity; weighted spaces; rate of convergence;
D O I
10.2298/FIL1908345A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Kantorovich type generalization of Jakimovski-Leviatan operators constructed by A. Jakimovski and D. Leviatan (1969) and the theorems on convergence and the degree of convergence are established. Furthermore, we study the convergence of these operators in a weighted space of functions on [0, infinity).
引用
收藏
页码:2345 / 2353
页数:9
相关论文
共 50 条
  • [21] APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS
    Dalmanoglu, Ozge
    Serenbay, Sevilay Kirci
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2016, 65 (01): : 157 - 169
  • [22] Approximation by Jakimovski–Leviatan-beta operators in weighted space
    M. Nasiruzzaman
    M. Mursaleen
    Advances in Difference Equations, 2020
  • [23] Approximation by Jakimovski-Leviatan-beta operators in weighted space
    Nasiruzzaman, M.
    Mursaleen, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [24] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2021
  • [25] On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators
    Karateke S.
    Zontul M.
    Mishra V.N.
    Gairola A.R.
    La Matematica, 2024, 3 (1): : 211 - 233
  • [26] Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators
    Trapti Neer
    Ana Maria Acu
    P. N. Agrawal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3445 - 3459
  • [27] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265
  • [28] Degree of approximation by Chlodowsky variant of Jakimovski-Leviatan-Durrmeyer type operators
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, P. N.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3445 - 3459
  • [29] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [30] Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials
    M. Mursaleen
    A. A. H. AL-Abeid
    Khursheed J. Ansari
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1251 - 1265