Techno-economic evaluation of methanol production via gasification of vacuum residue and conventional reforming routes

被引:11
|
作者
Al-Rowaili, Fayez Nasir [1 ,2 ]
Khalafalla, Siddig S. [1 ]
Al-Yami, Dhaffer S. [2 ]
Jamal, Aqil [2 ]
Ahmed, Usama [1 ,3 ]
Zahid, Umer [1 ,4 ]
Al-Mutairi, Eid M. [1 ,5 ]
机构
[1] King Fahd Univ Petr & Minerals, Chem Engn Dept, Dhahran 31261, Saudi Arabia
[2] Saudi Aramco, Res & Dev Ctr, Dhahran 31311, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen & Energy Stora, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
[5] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
来源
关键词
Methanol; Carbon capture and utilization; Vacuum residue gasification; Economic analysis; Process simulation; NATURAL-GAS; HYDROGEN-PRODUCTION; FUEL-OIL; SIMULATION; CO2; OPTIMIZATION;
D O I
10.1016/j.cherd.2021.11.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a cleaner and sustainable way. Gasification is a potential technology that can convert the dirty fossil fuels for the production of clean and environment friendly fuels in an economical manner. In this study, vacuum residue is employed as a feedstock to produce high grade methanol. A vacuum residue to methanol (VRTM) process is simulated using Aspen Plus for a methanol production capacity of 90 t/h with 99.9 wt.% purity. The developed VRTM process is bench-marked with the conventional steam reforming to methanol (SRTM) process through energy, environmental and economic analysis. The performance of vacuum residue gasifier, natural gas reformer and the methanol synthesis reactor are validated against the plant data and the simulation results are found to be in good agreement. The results showed that the VRTM process offers a process energy efficiency of 49.5% which is 1.6% higher than the SRTM process. The unit cost of methanol product from the VRTM process is $ 317/tCH(3)OH which is 14% lower compared to the SRTM process. In terms of environmental analysis, SRTM process emits less carbon emissions than the VRTM process. However, the VRTM process offers a high purity captured CO2 stream that can be utilized for another application that can further offset the methanol production cost. (C) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 50 条
  • [41] A Systematic Study on Techno-Economic Evaluation of Hydrogen Production
    de Abreu, Victor Hugo Souza
    Pereira, Victoria Goncalves Ferreira
    Proenca, Lais Ferreira Crispino
    Toniolo, Fabio Souza
    Santos, Andrea Souza
    ENERGIES, 2023, 16 (18)
  • [42] Methanol fuel production from solar-assisted supercritical water gasification of algae: a techno-economic annual optimisation
    Rahbari, Alireza
    Shirazi, Alec
    Pye, John
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (19) : 4913 - 4931
  • [43] Steam reforming of methanol for ultra-pure H2 production in a membrane reactor: Techno-economic analysis
    Kim, Sehwa
    Yun, Su-Won
    Lee, Boreum
    Heo, Juheon
    Kim, Kihyung
    Kim, Yong-Tae
    Lim, Hankwon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (04) : 2330 - 2339
  • [44] Biobased propylene and acrylonitrile production in a sugarcane biorefinery: Identification of preferred production routes via techno-economic and environmental assessments
    Rode, Lukhanyo
    Bosman, Catharine Elizabeth
    Louw, Jeanne
    Petersen, Abdul
    Ghods, Nosaibeh Nosrati
    Gorgens, Johann Ferdinand
    BIOMASS & BIOENERGY, 2024, 190
  • [45] Techno-economic analysis of coal gasification based co-production systems
    Yang, Siyu
    Li, Hengchong
    Qian, Yu
    11TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, PTS A AND B, 2012, 31 : 455 - 459
  • [46] A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion
    Bridgwater, AV
    Toft, AJ
    Brammer, JG
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2002, 6 (03): : 181 - 248
  • [47] Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification
    Shaikh, Abdul Rahim
    Wang, Qinhui
    Han, Long
    Feng, Yi
    Sharif, Zohaib
    Li, Zhixin
    Cen, Jianmeng
    Kumar, Sunel
    SUSTAINABILITY, 2022, 14 (04)
  • [48] Process simulation and techno-economic assessment of SER steam gasification for hydrogen production
    Schweitzer, Daniel
    Albrecht, Friedemann Georg
    Schmid, Max
    Beirow, Marcel
    Spoerl, Reinhold
    Dietrich, Ralph-Uwe
    Seitz, Antje
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (02) : 569 - 579
  • [49] Techno-economic analysis of biomass-to-liquids production based on gasification scenarios
    Swanson, Ryan M.
    Platon, Alexandru
    Satrio, Justinus A.
    Brown, Robert C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [50] Piggery waste to sustainable fuels via indirect supercritical water gasification and membrane reforming at 600 °C: a techno-economic assessment
    Bardwell, Louise
    Rahbari, Alireza
    Wang, Ye
    Amidy, Martin
    Pye, John
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (13): : 2869 - 2879