Techno-economic evaluation of methanol production via gasification of vacuum residue and conventional reforming routes

被引:11
|
作者
Al-Rowaili, Fayez Nasir [1 ,2 ]
Khalafalla, Siddig S. [1 ]
Al-Yami, Dhaffer S. [2 ]
Jamal, Aqil [2 ]
Ahmed, Usama [1 ,3 ]
Zahid, Umer [1 ,4 ]
Al-Mutairi, Eid M. [1 ,5 ]
机构
[1] King Fahd Univ Petr & Minerals, Chem Engn Dept, Dhahran 31261, Saudi Arabia
[2] Saudi Aramco, Res & Dev Ctr, Dhahran 31311, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen & Energy Stora, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
[5] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
来源
关键词
Methanol; Carbon capture and utilization; Vacuum residue gasification; Economic analysis; Process simulation; NATURAL-GAS; HYDROGEN-PRODUCTION; FUEL-OIL; SIMULATION; CO2; OPTIMIZATION;
D O I
10.1016/j.cherd.2021.11.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a cleaner and sustainable way. Gasification is a potential technology that can convert the dirty fossil fuels for the production of clean and environment friendly fuels in an economical manner. In this study, vacuum residue is employed as a feedstock to produce high grade methanol. A vacuum residue to methanol (VRTM) process is simulated using Aspen Plus for a methanol production capacity of 90 t/h with 99.9 wt.% purity. The developed VRTM process is bench-marked with the conventional steam reforming to methanol (SRTM) process through energy, environmental and economic analysis. The performance of vacuum residue gasifier, natural gas reformer and the methanol synthesis reactor are validated against the plant data and the simulation results are found to be in good agreement. The results showed that the VRTM process offers a process energy efficiency of 49.5% which is 1.6% higher than the SRTM process. The unit cost of methanol product from the VRTM process is $ 317/tCH(3)OH which is 14% lower compared to the SRTM process. In terms of environmental analysis, SRTM process emits less carbon emissions than the VRTM process. However, the VRTM process offers a high purity captured CO2 stream that can be utilized for another application that can further offset the methanol production cost. (C) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 50 条
  • [21] Sustainable production of methanol using landfill gas via carbon dioxide reforming and hydrogenation: Process development and techno-economic analysis
    Gao, Ruxing
    Zhang, Chundong
    Lee, Yun-Jo
    Kwak, Geunjae
    Jun, Ki-Won
    Kim, Seok Ki
    Park, Hae-Gu
    Guan, Guofeng
    JOURNAL OF CLEANER PRODUCTION, 2020, 272
  • [22] Exergy assessment and techno-economic optimization of bioethanol production routes
    Ortiz, Pablo A. Silva
    Marechal, Francois
    Junior, Silvio de Oliveira
    FUEL, 2020, 279 (279)
  • [23] Techno-economic analysis and life cycle assessment of mixed plastic waste gasification for production of methanol and hydrogen
    Afzal, Shaik
    Singh, Avantika
    Nicholson, Scott R.
    Uekert, Taylor
    DesVeaux, Jason S.
    Tan, Eric C. D.
    Dutta, Abhijit
    Carpenter, Alberta C.
    Baldwin, Robert M.
    Beckham, Gregg T.
    GREEN CHEMISTRY, 2023, 25 (13) : 5068 - 5085
  • [24] Methanol production via pressurized entrained flow biomass gasification - Techno-economic comparison of integrated vs. stand-alone production
    Andersson, Jim
    Lundgren, Joakim
    Marklund, Magnus
    BIOMASS & BIOENERGY, 2014, 64 : 256 - 268
  • [25] Techno-economic and environmental assessment of methanol steam reforming for H2 production at various scales
    Byun, Manhee
    Lee, Boreum
    Lee, Hyunjun
    Jung, Seungkyo
    Ji, Hyunjin
    Lim, Hankwon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 24146 - 24158
  • [26] Techno-economic modeling of an integrated biomethane-biomethanol production process via biomass gasification, electrolysis, biomethanation, and catalytic methanol synthesis
    Lorenzo Menin
    Vittoria Benedetti
    Francesco Patuzzi
    Marco Baratieri
    Biomass Conversion and Biorefinery, 2023, 13 : 977 - 998
  • [27] Techno-economic modeling of an integrated biomethane-biomethanol production process via biomass gasification, electrolysis, biomethanation, and catalytic methanol synthesis
    Menin, Lorenzo
    Benedetti, Vittoria
    Patuzzi, Francesco
    Baratieri, Marco
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (02) : 977 - 998
  • [28] Techno-economic assessment of hydrogen production via steam reforming of palm oil mill effluent
    Wee, Andre Nathaniel Chung Han
    Erison, Arson Edberg
    Anyek, Eugenie Hulo Edward
    Pakpahan, Grace Riestiana
    Lim, Jing Ru
    Tiong, Angnes Ngieng Tze
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [29] Techno-Economic Analysis of Biomethanol Production via Hybrid Steam Reforming of Glycerol with Natural Gas
    Ramachandran, R. P. Balegedde
    Oudenhoven, S. R. G.
    Kersten, S. R. A.
    van Rossum, G.
    van der Ham, A. G. J.
    ENERGY & FUELS, 2013, 27 (10) : 5962 - 5974
  • [30] Techno-economic assessment of hydrogen production via steam reforming of palm oil mill effluent
    Wee, Andre Nathaniel Chung Han
    Erison, Arson Edberg
    Edward Anyek, Eugenie Hulo
    Pakpahan, Grace Riestiana
    Lim, Jing Ru
    Tiong, Angnes Ngieng Tze
    Sustainable Energy Technologies and Assessments, 2022, 53