Feynman integrals with point interactions

被引:0
|
作者
Franchini, E [1 ]
Maioli, M [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Matemat, I-41100 Modena, Italy
关键词
Feynman-Kae formula; Markov property; Schrodinger sernigroup; point estimates; Delta-type interaction;
D O I
10.1016/S0898-1221(03)90134-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Feynman-Kac formula for Schrodinger operators including a one-center point inter action in R-3 plus a bounded potential is proved. Functional integration methods on similar Kac's averages with point interactions allow us to construct bounded self-adjoint semigroups in L-2(R-3), with bounded below Schrodinger generators, when V+ is an element of L-loc(2) and V- belongs to a large class of L-2 + L-infinity potentials. Moreover, a pointwise bound on the range of the semigroup is given. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
  • [41] APPROXIMATIONS TO CERTAIN FEYNMAN INTEGRALS
    CAMERON, RH
    JOURNAL D ANALYSE MATHEMATIQUE, 1968, 21 : 337 - &
  • [42] Unregulated divergences of Feynman integrals
    Chen, Wen
    PHYSICS LETTERS B, 2025, 862
  • [43] Feynman integrals and hypergeometric functions
    Garcia, Hector Luna
    Garcia, Luz Maria
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2014, 5
  • [44] Feynman integrals and multiple polylogarithms
    Weinzierl, Stefan
    RENORMALIZATION AND GALOIS THEORIES, 2009, 15 : 247 - +
  • [45] Evaluating Feynman integrals - Introduction
    Smirnov, VA
    EVALUATING FEYNMAN INTEGRALS, 2004, 211 : 1 - 9
  • [46] Evaluating Feynman integrals by the hypergeometry
    Feng, Tai-Fu
    Chang, Chao-Hsi
    Chen, Jian-Bin
    Gu, Zhi-Hua
    Zhang, Hai-Bin
    NUCLEAR PHYSICS B, 2018, 927 : 516 - 549
  • [47] Feynman Integrals and Hypergeometric Functions
    Luna Garcia, Hector
    Maria Garcia, Luz
    Mares, Ruben
    Ortega, Enrique
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [48] Generalizations of polylogarithms for Feynman integrals
    Bogner, Christian
    17TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2016), 2016, 762
  • [49] A computation of two-loop six-point Feynman integrals in dimensional regularization
    Henn, Johannes
    Matijasic, Antonela
    Miczajka, Julian
    Peraro, Tiziano
    Xu, Yingxuan
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [50] Reduction method for dimensionally regulatedone-loop N-point Feynman integrals
    G. Duplančić
    B. Nižić
    The European Physical Journal C - Particles and Fields, 2004, 35 : 105 - 118