Feynman integrals with point interactions

被引:0
|
作者
Franchini, E [1 ]
Maioli, M [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Matemat, I-41100 Modena, Italy
关键词
Feynman-Kae formula; Markov property; Schrodinger sernigroup; point estimates; Delta-type interaction;
D O I
10.1016/S0898-1221(03)90134-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Feynman-Kac formula for Schrodinger operators including a one-center point inter action in R-3 plus a bounded potential is proved. Functional integration methods on similar Kac's averages with point interactions allow us to construct bounded self-adjoint semigroups in L-2(R-3), with bounded below Schrodinger generators, when V+ is an element of L-loc(2) and V- belongs to a large class of L-2 + L-infinity potentials. Moreover, a pointwise bound on the range of the semigroup is given. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
  • [31] Feynman-Jackson integrals
    Rafael Díaz
    Eddy Pariguan
    Journal of Nonlinear Mathematical Physics, 2006, 13 : 365 - 376
  • [32] Feynman integrals and intersection theory
    Pierpaolo Mastrolia
    Sebastian Mizera
    Journal of High Energy Physics, 2019
  • [33] Functional reduction of Feynman integrals
    Tarasov, O. V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [34] Blowing up Feynman integrals
    Bogner, Christian
    Weinzierl, Stefan
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2008, 183 : 256 - 261
  • [35] Cuts of Feynman Integrals inHAq
    Frellesvig, Hjalte
    Papadopoulos, Costas G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [36] Functional reduction of Feynman integrals
    O. V. Tarasov
    Journal of High Energy Physics, 2019
  • [37] Polytope symmetries of Feynman integrals
    de la Cruz, Leonardo
    PHYSICS LETTERS B, 2024, 854
  • [38] FEYNMAN INTEGRALS + SCHRODINGER EQUATION
    NELSON, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (03) : 332 - &
  • [39] GENERALIZED ILSTOW AND FEYNMAN INTEGRALS
    SKOUG, DL
    PACIFIC JOURNAL OF MATHEMATICS, 1968, 26 (01) : 171 - &
  • [40] A geometrical angle on Feynman integrals
    Davydychev, AI
    Delbourgo, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 4299 - 4334