Feynman integrals with point interactions

被引:0
|
作者
Franchini, E [1 ]
Maioli, M [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Matemat, I-41100 Modena, Italy
关键词
Feynman-Kae formula; Markov property; Schrodinger sernigroup; point estimates; Delta-type interaction;
D O I
10.1016/S0898-1221(03)90134-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Feynman-Kac formula for Schrodinger operators including a one-center point inter action in R-3 plus a bounded potential is proved. Functional integration methods on similar Kac's averages with point interactions allow us to construct bounded self-adjoint semigroups in L-2(R-3), with bounded below Schrodinger generators, when V+ is an element of L-loc(2) and V- belongs to a large class of L-2 + L-infinity potentials. Moreover, a pointwise bound on the range of the semigroup is given. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
  • [21] Hypergeometric structures in Feynman integrals
    Bluemlein, J.
    Saragnese, M.
    Schneider, C.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023, 91 (05) : 591 - 649
  • [22] Hypergeometric structures in Feynman integrals
    J. Blümlein
    M. Saragnese
    C. Schneider
    Annals of Mathematics and Artificial Intelligence, 2023, 91 : 591 - 649
  • [23] GENERALIZATION OF FEYNMAN PATH INTEGRALS
    THURBER, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A677 - A678
  • [24] FEYNMAN-CAMERON INTEGRALS
    BEEKMAN, JA
    JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (03): : 253 - &
  • [25] Feynman integrals: a brief review
    不详
    APPLIED ASYMPTOTIC EXPANSIONS IN MOMENTA AND MASSES, 2002, 177 : 17 - 50
  • [26] An Introduction to Motivic Feynman Integrals
    Rella, Claudia
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [27] Feynman integrals with absorbing boundaries
    Marchewka, A
    Schuss, Z
    PHYSICS LETTERS A, 1998, 240 (4-5) : 177 - 184
  • [28] Cluster Algebras for Feynman Integrals
    Chicherin, Dmitry
    Henn, Johannes M.
    Papathanasiou, Georgios
    PHYSICAL REVIEW LETTERS, 2021, 126 (09)
  • [29] FEYNMAN INTEGRALS AND MOMENT PROBLEM
    PUSTERLA, M
    TURCHETTI, G
    VITALI, G
    LETTERE AL NUOVO CIMENTO, 1976, 16 (12): : 367 - 372
  • [30] ASYMPTOTIC ESTIMATES OF FEYNMAN INTEGRALS
    FINK, JP
    JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (09) : 1389 - &