Feynman integrals with point interactions

被引:0
|
作者
Franchini, E [1 ]
Maioli, M [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Matemat, I-41100 Modena, Italy
关键词
Feynman-Kae formula; Markov property; Schrodinger sernigroup; point estimates; Delta-type interaction;
D O I
10.1016/S0898-1221(03)90134-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Feynman-Kac formula for Schrodinger operators including a one-center point inter action in R-3 plus a bounded potential is proved. Functional integration methods on similar Kac's averages with point interactions allow us to construct bounded self-adjoint semigroups in L-2(R-3), with bounded below Schrodinger generators, when V+ is an element of L-loc(2) and V- belongs to a large class of L-2 + L-infinity potentials. Moreover, a pointwise bound on the range of the semigroup is given. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
  • [1] FOKKER-WHEELER-FEYNMAN INTERACTIONS WITHOUT INTEGRALS
    STEPHAS, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (09) : 2069 - 2071
  • [2] GENERALIZED FEYNMAN-INTEGRALS VIA CONDITIONAL FEYNMAN-INTEGRALS
    CHUNG, DM
    PARK, C
    SKOUG, D
    MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (02) : 377 - 391
  • [3] Feynman integrals and motives
    Marcolli, Matilde
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 293 - 332
  • [4] Singularities of Feynman integrals
    Pathak, Tanay
    Sreekantan, Ramesh
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024, 233 (11-12): : 2037 - 2055
  • [5] Periods and Feynman integrals
    Bogner, Christian
    Weinzierl, Stefan
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [6] Feynman integrals of Grassmannians
    Feng, Tai-Fu
    Zhang, Hai-Bin
    Chang, Chao-Hsi
    PHYSICAL REVIEW D, 2022, 106 (11)
  • [7] Feynman path integrals and Lebesgue–Feynman measures
    J. Montaldi
    O. G. Smolyanov
    Doklady Mathematics, 2017, 96 : 368 - 372
  • [8] ON RENORMALIZATION OF FEYNMAN INTEGRALS
    WESTWATE.MJ
    FORTSCHRITTE DER PHYSIK, 1969, 17 (01): : 1 - &
  • [9] Finite Feynman integrals
    Gambuti, Giulio
    Kosower, David A.
    Novichkov, Pavel P.
    Tancredi, Lorenzo
    PHYSICAL REVIEW D, 2024, 110 (11)
  • [10] Determining arbitrary Feynman integrals by vacuum integrals
    Liu, Xiao
    Ma, Yan-Qing
    PHYSICAL REVIEW D, 2019, 99 (07)