Semi-Amortized Variational Autoencoders

被引:0
|
作者
Kim, Yoon [1 ]
Wiseman, Sam [1 ]
Miller, Andrew C. [1 ]
Sontag, David [2 ,3 ]
Rush, Alexander M. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, IMES, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational parameters and run stochastic variational inference (SVI) to refine them. Crucially, the local SVI procedure is itself differentiable, so the inference network and generative model can be trained end-to-end with gradient-based optimization. This semi-amortized approach enables the use of rich generative models without experiencing the posterior-collapse phenomenon common in training VAEs for problems like text generation. Experiments show this approach outperforms strong autoregressive and variational baselines on standard text and image datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Rethinking Controllable Variational Autoencoders
    Shao, Huajie
    Yang, Yifei
    Lin, Haohong
    Lin, Longzhong
    Chen, Yizhuo
    Yang, Qinmin
    Zhao, Han
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19228 - 19237
  • [42] EXPLORING VARIATIONAL AUTOENCODERS FOR LEMMATIZATION
    Rebeja, Petru
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE LINGUISTIC RESOURCES AND TOOLS FOR NATURAL LANGUAGE PROCESSING, 2020, : 77 - 82
  • [43] Recursive Inference for Variational Autoencoders
    Kim, Minyoung
    Pavlovic, Vladimir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [44] Variational Autoencoders: A Harmonic Perspective
    Camuto, Alexander
    Willetts, Matthew
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [45] Certifiably Robust Variational Autoencoders
    Barrett, Ben
    Camuto, Alexander
    Willetts, Matthew
    Rainforth, Tom
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [46] Variational Clustering: Leveraging Variational Autoencoders for Image Clustering
    Prasad, Vignesh
    Das, Dipanjan
    Bhowmick, Brojeshwar
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [47] Autoencoders for Amortized Joint Maximum Likelihood Estimation of Confirmatory Item Factor Models
    Molenaar, Dylan
    Grasman, Raoul P. P. P.
    Curi, Mariana
    MULTIVARIATE BEHAVIORAL RESEARCH, 2025,
  • [48] Amortized Inference of Variational Bounds for Learning Noisy-OR
    Yan, Yiming
    Ailem, Melissa
    Sha, Fei
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [49] Training Variational Autoencoders with Buffered Stochastic Variational Inference
    Shu, Rui
    Bui, Hung H.
    Whang, Jay
    Ermon, Stefano
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [50] Predicting Adverse Drug-Drug Interactions via Semi-supervised Variational Autoencoders
    Hou, Meihao
    Yang, Fan
    Cui, Lizhen
    Guo, Wei
    WEB AND BIG DATA, PT II, APWEB-WAIM 2020, 2020, 12318 : 132 - 140