Semi-Amortized Variational Autoencoders

被引:0
|
作者
Kim, Yoon [1 ]
Wiseman, Sam [1 ]
Miller, Andrew C. [1 ]
Sontag, David [2 ,3 ]
Rush, Alexander M. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, IMES, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational parameters and run stochastic variational inference (SVI) to refine them. Crucially, the local SVI procedure is itself differentiable, so the inference network and generative model can be trained end-to-end with gradient-based optimization. This semi-amortized approach enables the use of rich generative models without experiencing the posterior-collapse phenomenon common in training VAEs for problems like text generation. Experiments show this approach outperforms strong autoregressive and variational baselines on standard text and image datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] DeepCoder: Semi-parametric Variational Autoencoders for Automatic Facial Action Coding
    Dieu Linh Tran
    Walecki, Robert
    Rudovic, Ognjen
    Eleftheriadis, Stefanos
    Schuller, Bjorn
    Pantic, Maja
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3209 - 3218
  • [22] Affine Variational Autoencoders
    Bidart, Rene
    Wong, Alexander
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 461 - 472
  • [23] Clockwork Variational Autoencoders
    Saxena, Vaibhav
    Ba, Jimmy
    Hafner, Danijar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [24] Amortized Variational Inference in Simple Hierarchical Models
    Agrawal, Abhinav
    Domke, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [25] Amortized Mixture Prior for Variational Sequence Generation
    Chien, Jen-Tzung
    Tsai, Chih-Jung
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] Meta-Amortized Variational Inference and Learning
    Wu, Mike
    Choi, Kristy
    Goodman, Noah
    Ermon, Stefano
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6404 - 6412
  • [27] Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
    Whiteway, Matthew R.
    Biderman, Dan
    Friedman, Yoni
    Dipoppa, Mario
    Buchanan, E. Kelly
    Wu, Anqi
    Zhou, John
    Bonacchi, Niccolò
    Miska, Nathaniel J.
    Noel, Jean-Paul
    Rodriguez, Erica
    Schartner, Michael
    Socha, Karolina
    Urai, Anne E.
    Salzman, C. Daniel
    Cunningham, John P.
    Paninski, Liam
    PLoS Computational Biology, 2021, 17 (09)
  • [28] Amortized Variational Inference for Road Friction Estimation
    Chen, Shuangshuang
    Ding, Sihao
    Muppirisetty, L. Srikar
    Karayiannidis, Yiannis
    Byorkman, Marten
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1777 - 1784
  • [29] Lifelong Mixture of Variational Autoencoders
    Ye, Fei
    Bors, Adrian G.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 461 - 474
  • [30] Quality metrics of variational autoencoders
    Leontev, Mikhail
    Mikheev, Alexander
    Sviatov, Kirill
    Sukhov, Sergey
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,