Semi-Amortized Variational Autoencoders

被引:0
|
作者
Kim, Yoon [1 ]
Wiseman, Sam [1 ]
Miller, Andrew C. [1 ]
Sontag, David [2 ,3 ]
Rush, Alexander M. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, IMES, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational parameters and run stochastic variational inference (SVI) to refine them. Crucially, the local SVI procedure is itself differentiable, so the inference network and generative model can be trained end-to-end with gradient-based optimization. This semi-amortized approach enables the use of rich generative models without experiencing the posterior-collapse phenomenon common in training VAEs for problems like text generation. Experiments show this approach outperforms strong autoregressive and variational baselines on standard text and image datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Variational Autoencoders for Assessing Sustainability
    Fernando Romero-Canizares, Jose
    Vicente-Galindo, Purificacion
    DOCTORAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGIES - DSICT, 2022, 846 : 47 - 62
  • [32] Efficient Evolution of Variational Autoencoders
    Hajewski, Jeff
    Oliveira, Suely
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1541 - 1550
  • [33] Resampled Priors for Variational Autoencoders
    Bauer, Matthias
    Mnih, Andriy
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 66 - 75
  • [34] Variational Graph Normalized AutoEncoders
    Ahn, Seong Jin
    Kim, MyoungHo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2827 - 2831
  • [35] Inference Suboptimality in Variational Autoencoders
    Cremer, Chris
    Li, Xuechen
    Duvenaud, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [36] Variational Autoencoders for Collaborative Filtering
    Liang, Dawen
    Krishnan, Rahul G.
    Hoffman, Matthew D.
    Jebara, Tony
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 689 - 698
  • [37] An Evolutionary Approach to Variational Autoencoders
    Hajewski, Jeff
    Oliveira, Suely
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 71 - 77
  • [38] Disentangling Disentanglement in Variational Autoencoders
    Mathieu, Emile
    Rainforth, Tom
    Siddharth, N.
    Teh, Yee Whye
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [39] A Geometric Perspective on Variational Autoencoders
    Chadebec, Clement
    Allassonniere, Stephanie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [40] Shedding Light on Variational Autoencoders
    Ruiz Vargas, J. C.
    Novaes, S. F.
    Cobe, R.
    Iope, R.
    Stanzani, S.
    Tomei, T. R.
    2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018), 2018, : 294 - 298