Semi-Amortized Variational Autoencoders

被引:0
|
作者
Kim, Yoon [1 ]
Wiseman, Sam [1 ]
Miller, Andrew C. [1 ]
Sontag, David [2 ,3 ]
Rush, Alexander M. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, IMES, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational parameters and run stochastic variational inference (SVI) to refine them. Crucially, the local SVI procedure is itself differentiable, so the inference network and generative model can be trained end-to-end with gradient-based optimization. This semi-amortized approach enables the use of rich generative models without experiencing the posterior-collapse phenomenon common in training VAEs for problems like text generation. Experiments show this approach outperforms strong autoregressive and variational baselines on standard text and image datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fast amortized inference of neural activity from calcium imaging data with variational autoencoders
    Speiser, Artur
    Yan, Jinyao
    Archer, Evan
    Buesing, Lars
    Turaga, Srinivas C.
    Macke, Jakob H.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] Semi-supervised voice conversion with amortized variational inference
    Stephenson, Cory
    Keskin, Gokce
    Thomas, Anil
    Elibol, Oguz H.
    INTERSPEECH 2019, 2019, : 729 - 733
  • [3] ViVA: Semi-supervised Visualization via Variational Autoencoders
    An, Sungtae
    Hong, Shenda
    Sun, Jimeng
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 22 - 31
  • [4] Semi-Supervised Channel Equalization Using Variational Autoencoders
    Burshtein, David
    Bery, Eli
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 19681 - 19695
  • [5] Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation
    Lavda, Frantzeska
    Kalousis, Alexandros
    ENTROPY, 2023, 25 (12)
  • [6] Semi-supervised Variational Autoencoders for Regression: Application to Soft Sensors
    Zhuang, Yilin
    Zhou, Zhuobin
    Alakent, Burak
    Mercangoz, Mehmet
    2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,
  • [7] Exploring semi-supervised variational autoencoders for biomedical relation extraction
    Zhang, Yijia
    Lu, Zhiyong
    METHODS, 2019, 166 : 112 - 119
  • [8] Amortized Variational Inference: A Systematic Review
    Ganguly A.
    Jain S.
    Watchareeruetai U.
    Journal of Artificial Intelligence Research, 2023, 78 : 167 - 215
  • [9] Amortized Variational Inference: When and Why?
    Margossian, Charles C.
    Blei, David M.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2024, 244 : 2434 - 2449
  • [10] Amortized Variational Inference: A Systematic Review
    Ganguly, Ankush
    Jain, Sanjana
    Watchareeruetai, Ukrit
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2023, 78 : 167 - 215