mVMC-Open-source software for many-variable variational Monte Carlo method

被引:74
|
作者
Misawa, Takahiro [1 ]
Morita, Satoshi [1 ]
Yoshimi, Kazuyoshi [1 ]
Kawamura, Mitsuaki [1 ]
Motoyama, Yuichi [1 ]
Ido, Kota [2 ]
Ohgoe, Takahiro [2 ]
Imada, Masatoshi [2 ]
Kato, Takeo [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
Numerical linear algebra; Lattice fermion models; Variational Monte Carlo method; GROUND-STATE; 2-DIMENSIONAL HUBBARD; MODEL;
D O I
10.1016/j.cpc.2018.08.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
mVMC (many-variable Variational Monte Carlo) is an open-source software package based on the variational Monte Carlo method applicable for a wide range of Hamiltonians for interacting fermion systems. In mVMC, we introduce more than ten thousands variational parameters and simultaneously optimize them by using the stochastic reconfiguration (SR) method. In this paper, we explain basics and user interfaces of mVMC. By using mVMC, users can perform the calculation by preparing only one input file of about ten lines for widely studied quantum lattice models, and can also perform it for general Hamiltonians by preparing several additional input files. We show the benchmark results of mVMC for the Hubbard model, the Heisenberg model, and the Kondo-lattice model. These benchmark results demonstrate that mVMC provides ground-state and low-energy-excited-state wave functions for interacting fermion systems with high accuracy. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:447 / 462
页数:16
相关论文
共 50 条
  • [31] Monte Carlo Modeling Method for Surface Light Source
    Tang Haisong
    Mao Xianglong
    Feng Zexin
    Li Haoran
    ACTA OPTICA SINICA, 2023, 43 (21)
  • [32] Ground State of Beryllium Atom Using Variational Monte Carlo Method
    Doma, S. B.
    El-Gendy, H. S.
    Abdel-Khalek, M. A.
    Mohamed, M. E.
    ACTA PHYSICA POLONICA A, 2020, 138 (06) : 838 - 843
  • [33] Variance extrapolation method for neural-network variational Monte Carlo
    Fu, Weizhong
    Ren, Weiluo
    Chen, Ji
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [34] Transcorrelated method for electronic systems coupled with variational Monte Carlo calculation
    Umezawa, N
    Tsuneyuki, S
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (19): : 10015 - 10031
  • [35] Variational Monte Carlo method for electron-phonon coupled systems
    Ohgoe, Takahiro
    Imada, Masatoshi
    PHYSICAL REVIEW B, 2014, 89 (19):
  • [36] New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves
    Polat, H. Mert
    Salehi, Hirad S.
    Hens, Remco
    Wasik, Dominika O.
    Rahbari, Ahmadreza
    de Meyer, Frederick
    Houriez, Celine
    Coquelet, Christophe
    Calero, Sofia
    Dubbeldam, David
    Moultos, Othonas A.
    Vlugt, Thijs J. H.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (08) : 3752 - 3757
  • [37] ESTIMATION OF RANDOM VARIABLE DISTRIBUTION PARAMETERS BY THE MONTE CARLO METHOD
    Sienkowski, Sergiusz
    METROLOGY AND MEASUREMENT SYSTEMS, 2013, 20 (02) : 249 - 262
  • [38] TopasOpt: An open-source library for optimization with Topas Monte Carlo
    Whelan, Brendan
    Loo Jr, Billy W. W.
    Wang, Jinghui
    Keall, Paul
    MEDICAL PHYSICS, 2023, 50 (02) : 1121 - 1131
  • [39] TopasOpt: An Open-Source Library for Optimization with Topas Monte Carlo
    Whelan, B.
    Loo, B.
    Keall, P.
    MEDICAL PHYSICS, 2022, 49 (06) : E307 - E308
  • [40] MONTE-CARLO METHOD FOR THE MANY-BODY SCATTERING PROBLEM
    ALHASSID, Y
    KOONIN, SE
    ANNALS OF PHYSICS, 1984, 155 (01) : 108 - 132