mVMC-Open-source software for many-variable variational Monte Carlo method

被引:74
|
作者
Misawa, Takahiro [1 ]
Morita, Satoshi [1 ]
Yoshimi, Kazuyoshi [1 ]
Kawamura, Mitsuaki [1 ]
Motoyama, Yuichi [1 ]
Ido, Kota [2 ]
Ohgoe, Takahiro [2 ]
Imada, Masatoshi [2 ]
Kato, Takeo [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
Numerical linear algebra; Lattice fermion models; Variational Monte Carlo method; GROUND-STATE; 2-DIMENSIONAL HUBBARD; MODEL;
D O I
10.1016/j.cpc.2018.08.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
mVMC (many-variable Variational Monte Carlo) is an open-source software package based on the variational Monte Carlo method applicable for a wide range of Hamiltonians for interacting fermion systems. In mVMC, we introduce more than ten thousands variational parameters and simultaneously optimize them by using the stochastic reconfiguration (SR) method. In this paper, we explain basics and user interfaces of mVMC. By using mVMC, users can perform the calculation by preparing only one input file of about ten lines for widely studied quantum lattice models, and can also perform it for general Hamiltonians by preparing several additional input files. We show the benchmark results of mVMC for the Hubbard model, the Heisenberg model, and the Kondo-lattice model. These benchmark results demonstrate that mVMC provides ground-state and low-energy-excited-state wave functions for interacting fermion systems with high accuracy. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:447 / 462
页数:16
相关论文
共 50 条
  • [21] Excited states in variational Monte Carlo using a penalty method
    Pathak, Shivesh
    Busemeyer, Brian
    Rodrigues, Joao N. B.
    Wagner, Lucas K.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (03):
  • [22] Variational quantum Monte-Carlo method in surface physics
    Schattke, W
    Bahnsen, R
    Redmer, R
    PROGRESS IN SURFACE SCIENCE, 2003, 72 (5-8) : 87 - 116
  • [23] A Simplified Variable Metric Hybrid Monte Carlo Method
    Calvo, M. P.
    Rodrigo, I.
    Sanz-Serna, J. M.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 14 - 17
  • [24] Cassandra: An open source Monte Carlo package for molecular simulation
    Shah, Jindal K.
    Marin-Rimoldi, Eliseo
    Mullen, Ryan Gotchy
    Keene, Brian P.
    Khan, Sandip
    Paluch, Andrew S.
    Rai, Neeraj
    Romanielo, Lucienne L.
    Rosch, Thomas W.
    Yoo, Brian
    Maginn, Edward J.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (19) : 1727 - 1739
  • [25] Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence
    Radosevich, Andrew J.
    Rogers, Jeremy D.
    Capoglu, Ilker R.
    Mutyal, Nikhil N.
    Pradhan, Prabhakar
    Backman, Vadim
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (11)
  • [26] Diagrammatic Monte Carlo Method for Many-Polaron Problems
    Mishchenko, Andrey S.
    Nagaosa, Naoto
    Prokof'ev, Nikolay
    PHYSICAL REVIEW LETTERS, 2014, 113 (16)
  • [27] Design method of Open Source Software
    Goyal, Himani
    Kour, Jasbir
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2011, 11 (02): : 137 - 142
  • [28] A combined variational and diagrammatic quantum Monte Carlo approach to the many-electron problem
    Chen, Kun
    Haule, Kristjan
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [29] A combined variational and diagrammatic quantum Monte Carlo approach to the many-electron problem
    Kun Chen
    Kristjan Haule
    Nature Communications, 10
  • [30] Inchworm Monte Carlo Method for Open Quantum Systems
    Cai, Zhenning
    Lu, Jianfeng
    Yang, Siyao
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (11) : 2430 - 2472