mVMC-Open-source software for many-variable variational Monte Carlo method

被引:74
|
作者
Misawa, Takahiro [1 ]
Morita, Satoshi [1 ]
Yoshimi, Kazuyoshi [1 ]
Kawamura, Mitsuaki [1 ]
Motoyama, Yuichi [1 ]
Ido, Kota [2 ]
Ohgoe, Takahiro [2 ]
Imada, Masatoshi [2 ]
Kato, Takeo [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
Numerical linear algebra; Lattice fermion models; Variational Monte Carlo method; GROUND-STATE; 2-DIMENSIONAL HUBBARD; MODEL;
D O I
10.1016/j.cpc.2018.08.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
mVMC (many-variable Variational Monte Carlo) is an open-source software package based on the variational Monte Carlo method applicable for a wide range of Hamiltonians for interacting fermion systems. In mVMC, we introduce more than ten thousands variational parameters and simultaneously optimize them by using the stochastic reconfiguration (SR) method. In this paper, we explain basics and user interfaces of mVMC. By using mVMC, users can perform the calculation by preparing only one input file of about ten lines for widely studied quantum lattice models, and can also perform it for general Hamiltonians by preparing several additional input files. We show the benchmark results of mVMC for the Hubbard model, the Heisenberg model, and the Kondo-lattice model. These benchmark results demonstrate that mVMC provides ground-state and low-energy-excited-state wave functions for interacting fermion systems with high accuracy. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:447 / 462
页数:16
相关论文
共 50 条
  • [11] A new algorithm for variational quantum Monte Carlo method
    Huang, HX
    Cao, ZX
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1998, 19 (10): : 1636 - 1639
  • [12] Variance minimization for variational quantum Monte Carlo method
    黄宏新
    曹泽星
    刘述斌
    ProgressinNaturalScience, 1997, (05) : 39 - 43
  • [13] Variance minimization for variational quantum Monte Carlo method
    Huang, HX
    Cao, ZX
    Liu, SB
    PROGRESS IN NATURAL SCIENCE, 1997, 7 (05) : 549 - 553
  • [14] New algorithm for variational quantum Monte Carlo method
    Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao, 10 (1636-1639):
  • [15] Wave function optimization in the variational Monte Carlo method
    Sorella, S
    PHYSICAL REVIEW B, 2005, 71 (24)
  • [16] A MONTE CARLO METHOD FOR NUCLEAR MANY BODY PROBLEMS
    SCHMID, EW
    NUCLEAR PHYSICS, 1962, 32 (01): : 82 - &
  • [17] Variational Monte Carlo Method Combined with Quantum-Number Projection and Multi-Variable Optimization
    Tahara, Daisuke
    Imada, Masatoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (11)
  • [18] Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method
    Hens, Remco
    Rahbari, Ahmadreza
    Caro-Ortiz, Sebastian
    Dawass, Noura
    Erdos, Mate
    Poursaeidesfahani, Ali
    Salehi, Hirad S.
    Celebi, Alper T.
    Ramdin, Mahinder
    Moultos, Othonas A.
    Dubbeldam, David
    Vlugt, Thijs J. H.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (06) : 2678 - 2682
  • [19] Optimized implementation for calculation and fast-update of Pfaffians installed to the open-source fermionic variational solver mVMC
    Xu, RuQing G.
    Okub, Tsuyoshi
    Todo, Synge
    Imada, Masatoshi
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 277
  • [20] Application of variational Monte Carlo method to the confined helium atom
    Doma, Salah B.
    El-Gammal, Fatma N.
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2012, 6 (01)