Hardware Accelerator for Analytics of Sparse Data

被引:0
|
作者
Nurvitadhi, Eriko [1 ]
Mishra, Asit [1 ]
Wang, Yu [1 ]
Venkatesh, Ganesh [1 ]
Marr, Debbie [1 ]
机构
[1] Intel Corp, Hillsboro, OR 97124 USA
关键词
Hardware accelerator; analytics; machine learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid growth of Internet led to web applications that produce large unstructured sparse datasets (e.g., texts, ratings). Machine learning (ML) algorithms are the basis for many important analytics workloads that extract knowledge from these datasets. This paper characterizes such workloads on a high-end server for real-world datasets and shows that a set of sparse matrix operations dominates runtime. Further, they run inefficiently due to low compute-per-byte and challenging thread scaling behavior. As such, we propose a hardware accelerator to perform these operations with extreme efficiency. Simulations and RTL synthesis to 14nm ASIC demonstrate significant performance and performance/Watt improvements over conventional processors, with only a small area overhead.
引用
收藏
页码:1616 / 1621
页数:6
相关论文
共 50 条
  • [41] Error-bounded Sampling for Analytics on Big Sparse Data
    Yan, Ying
    Chen, Liang Jeff
    Zhang, Zheng
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (13): : 1508 - 1519
  • [42] The Gamma Matrix to Summarize Dense and Sparse Data Sets for Big Data Analytics
    Ordonez, Carlos
    Zhang, Yiqun
    Cabrera, Wellington
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (07) : 1905 - 1918
  • [43] Host Bypassing: Direct Data Piping from the Network to the Hardware Accelerator
    Kundel, Ralf
    Eryigit, Kadir
    Markussen, Jonas
    Griwodz, Carsten
    Abboud, Osama
    Hark, Rhaban
    Steinmetz, Ralf
    2021 IEEE 14TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP (MCSOC 2021), 2021, : 23 - 30
  • [44] Data Flow Mapping onto DNN Accelerator Considering Hardware Cost
    Parchamdar, Baharealsadat
    Reshadi, Midia
    PROCEEDINGS OF THE 2020 IEEE DALLAS CIRCUITS AND SYSTEMS CONFERENCE (DCAS 2020), 2020,
  • [45] A New Hardware Accelerator for Data Sorting in Area & Energy Constrained Architectures
    Norollah, Amin
    Beitollahi, Hakem
    Patooghy, Ahmad
    2019 IEEE 62ND INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2019, : 985 - 988
  • [46] Data multiplexed and hardware reused architecture for deep neural network accelerator
    Raut, Gopal
    Biasizzo, Anton
    Dhakad, Narendra
    Gupta, Neha
    Papa, Gregor
    Vishvakarma, Santosh Kumar
    NEUROCOMPUTING, 2022, 486 : 147 - 159
  • [47] Low-Power Hardware Accelerator for Detrending Measured Biopotential Data
    Mittal, Rakshit
    Prince, A. Amalin
    Nalband, Saif
    Robert, Femi
    Fredo, Agastinose Ronickom Jac
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [48] Sparse Inverse Covariance Estimation for Causal Inference in Process Data Analytics
    Sundaramoorthy, Arun Senthil
    Varanasi, Santhosh Kumar
    Huang, Biao
    Ma, Yanjun
    Zhang, Haitao
    Wang, Dian
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (03) : 1268 - 1280
  • [49] An Automated Scanning Transmission Electron Microscope Guided by Sparse Data Analytics
    Olszta, Matthew
    Hopkins, Derek
    Fiedler, Kevin R.
    Oostrom, Marjolein
    Akers, Sarah
    Spurgeon, Steven R.
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (05) : 1611 - 1621
  • [50] SKT: A One-Pass Multi-Sketch Data Analytics Accelerator
    Chiosa, Monica
    Preusser, Thomas B.
    Alonso, Gustavo
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (11): : 2369 - 2382