Hardware Accelerator for Analytics of Sparse Data

被引:0
|
作者
Nurvitadhi, Eriko [1 ]
Mishra, Asit [1 ]
Wang, Yu [1 ]
Venkatesh, Ganesh [1 ]
Marr, Debbie [1 ]
机构
[1] Intel Corp, Hillsboro, OR 97124 USA
来源
PROCEEDINGS OF THE 2016 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE) | 2016年
关键词
Hardware accelerator; analytics; machine learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid growth of Internet led to web applications that produce large unstructured sparse datasets (e.g., texts, ratings). Machine learning (ML) algorithms are the basis for many important analytics workloads that extract knowledge from these datasets. This paper characterizes such workloads on a high-end server for real-world datasets and shows that a set of sparse matrix operations dominates runtime. Further, they run inefficiently due to low compute-per-byte and challenging thread scaling behavior. As such, we propose a hardware accelerator to perform these operations with extreme efficiency. Simulations and RTL synthesis to 14nm ASIC demonstrate significant performance and performance/Watt improvements over conventional processors, with only a small area overhead.
引用
收藏
页码:1616 / 1621
页数:6
相关论文
共 50 条
  • [31] Emergent models, frameworks, and hardware technologies for Big data analytics
    Sven Groppe
    The Journal of Supercomputing, 2020, 76 : 1800 - 1827
  • [32] Big Data Analytics on Modern Hardware Architectures: A Technology Survey
    Saecker, Michael
    Markl, Volker
    BUSINESS INTELLIGENCE, EBISS 2012, 2013, 138 : 125 - 149
  • [33] Prefetching for Array Data in Embedded Java']Java Hardware Accelerator
    Wu, Yi-Ruei
    Chen, Yu-Sheng
    Shann, Jean Jyh-Jiun
    2009 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), PROCEEDINGS OF TECHNICAL PROGRAM, 2009, : 363 - 366
  • [34] Fast Execution of an ASIFT Hardware Accelerator by Prior Data Processing
    Yum, Joohyuk
    Kim, Jin-Sung
    Lee, Hyuk-Jae
    ELECTRONICS, 2019, 8 (10)
  • [35] Accelerating Genomic Data Analytics With Composable Hardware Acceleration Framework
    Ham, Tae Jun
    Bruns-Smith, David
    Sweeney, Brendan
    Lee, Yejin
    Seo, Seong Hoon
    Song, U. Gyeong
    Oh, Young H.
    Asanovic, Krste
    Lee, Jae W.
    Wills, Lisa Wu
    IEEE MICRO, 2021, 41 (03) : 42 - 49
  • [36] CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data
    Samardzic, Nikola
    Feldmann, Axel
    Krastev, Aleksandar
    Manohar, Nathan
    Genise, Nicholas
    Devadas, Srinivas
    Eldefrawy, Karim
    Peikert, Chris
    Sanchez, Daniel
    PROCEEDINGS OF THE 2022 THE 49TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '22), 2022, : 173 - 187
  • [37] Hardware Accelerator for Data Anonymization Using Dynamic Partial Reconfiguration
    Sawaguchi, Sota
    Nishi, Hiroaki
    2016 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2016,
  • [38] Spara: An Energy-Efficient ReRAM-Based Accelerator for Sparse Graph Analytics Applications
    Zheng, Long
    Zhao, Jieshan
    Huang, Yu
    Wang, Qinggang
    Zeng, Zhen
    Xue, Jingling
    Liao, Xiaofei
    Jin, Hai
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM IPDPS 2020, 2020, : 696 - 707
  • [39] SparseTrajAnalytics: an Interactive Visual Analytics System for Sparse Trajectory Data
    Xinyue Ye
    Jiaxin Du
    Xi Gong
    Ye Zhao
    Shamal AL-Dohuki
    Farah Kamw
    Journal of Geovisualization and Spatial Analysis, 2021, 5
  • [40] SparseTrajAnalytics: an Interactive Visual Analytics System for Sparse Trajectory Data
    Ye, Xinyue
    Du, Jiaxin
    Gong, Xi
    Zhao, Ye
    AL-Dohuki, Shamal
    Kamw, Farah
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2021, 5 (01)