On explicit steady-state solutions of Fokker-Planck equations for a class of nonlinear feedback systems

被引:0
|
作者
Brockett, RW [1 ]
Liberzon, D [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the question of existence of steady-state probability distributions for systems perturbed by white noise. We describe a class of nonlinear feedback systems for which an explicit formula for the steady-state probability density can be found. These systems include what has been called monotemperaturic systems in earlier work, We also establish relationships between the steady-state probability densities and Liapunov functions for the corresponding deterministic systems.
引用
收藏
页码:264 / 268
页数:5
相关论文
共 50 条
  • [41] Stationary Solutions of Fokker-Planck Equations with Nonlinear Reaction Terms in Bounded Domains
    Precup, Radu
    Rubbioni, Paola
    POTENTIAL ANALYSIS, 2022, 57 (02) : 181 - 199
  • [42] Stationary Solutions of Fokker-Planck Equations with Nonlinear Reaction Terms in Bounded Domains
    Radu Precup
    Paola Rubbioni
    Potential Analysis, 2022, 57 : 181 - 199
  • [43] FOKKER-PLANCK EQUATION APPLIED TO NONLINEAR SYSTEMS
    KRISTIANSSON, L
    ERICSSON TECHNICS, 1968, 24 (03): : 161 - +
  • [44] Nonlinear Fokker-Planck equations, H - theorem, and entropies
    dos Santos, M. A. F.
    Lenzi, M. K.
    Lenzi, E. K.
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (04) : 1294 - 1299
  • [45] Nonlinear Fokker-Planck equations related to standard thermostatistics
    Schwaemmle, V.
    Curado, E. M. F.
    Nobre, F. D.
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 152 - 156
  • [46] A procedure for obtaining general nonlinear Fokker-Planck equations
    Nobre, FD
    Curado, EMF
    Rowlands, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 334 (1-2) : 109 - 118
  • [47] Random Walks Associated with Nonlinear Fokker-Planck Equations
    Mendes, Renio dos Santos
    Lenzi, Ervin Kaminski
    Malacarne, Luis Carlos
    Picoli, Sergio
    Jauregui, Max
    ENTROPY, 2017, 19 (04)
  • [48] Multivariate nonlinear Fokker-Planck equations and generalized thermostatistics
    Frank, TD
    Daffertshofer, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 292 (1-4) : 392 - 410
  • [49] RESCALED OBJECTIVE SOLUTIONS OF FOKKER-PLANCK AND BOLTZMANN EQUATIONS
    Matthies, Karsten
    Theil, Florian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1321 - 1348
  • [50] Exact solutions of the Fokker-Planck equations with moving boundaries
    Lo, CF
    ANNALS OF PHYSICS, 2005, 319 (02) : 326 - 332